22 research outputs found

    Tandem Z-Selective Cross-Metathesis/Dihydroxylation: Synthesis of anti-1,2-Diols

    Get PDF
    A stereoselective synthesis of anti-1,2-diols has been developed using a multitasking Ru catalyst in an assisted tandem catalysis protocol. A cyclometalated Ru complex catalyzes first a Z-selective cross-metathesis of two terminal olefins, followed by a stereospecific dihydroxylation. Both steps are catalyzed by Ru, as the Ru complex is converted to a dihydroxylation catalyst upon addition of NaIO_4. A variety of olefins were transformed into valuable, highly functionalized, and stereodefined molecules. Mechanistic experiments were performed to probe the nature of the oxidation step and catalyst inhibition pathways. These experiments point the way to more broadly applicable tandem catalytic transformations

    Aerobic Palladium-Catalyzed Dioxygenation of Alkenes Enabled by Catalytic Nitrite

    Get PDF
    Catalytic nitrite was found to enable carbon–oxygen bond-forming reductive elimination from unstable alkyl palladium intermediates, providing dioxygenated products from alkenes. A variety of functional groups were tolerated, and high yields (up to 94 %) were observed with many substrates, also for a multigram-scale reaction. Nitrogen dioxide, which could form from nitrite under the reaction conditions, was demonstrated to be a potential intermediate in the catalytic cycle. Furthermore, the reductive elimination event was probed with ^(18)O-labeling experiments, which demonstrated that both oxygen atoms in the difunctionalized products were derived from one molecule of acetic acid

    Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes

    Get PDF
    The aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine. Finally, the influence of proximal functional groups on this anti-Markovnikov reaction was explored, providing important preliminary mechanistic insight

    Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    Get PDF
    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity

    Efficient and Highly Aldehyde Selective Wacker Oxidation

    Get PDF
    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl_2(MeCN)_2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates

    Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation

    Get PDF
    An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation

    Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    Get PDF
    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone

    Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    Get PDF
    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. ^(18)O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt

    Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    Get PDF
    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features

    Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation

    Get PDF
    An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation
    corecore