1,283 research outputs found

    Geochemical Constraints on Mantle Sources and Basalt Petrogenesis in the Strait of Sicily Rift Zone (Italy): Insights into the Importance of Short Lengthscale Mantle Heterogeneity.

    Get PDF
    Igneous activity from the late Miocene to historic time (most recently 1891 ce) in the Strait of Sicily has created two islands (Pantelleria and Linosa) and several seamounts. These volcanoes are dominated by transitional (ol+hy-normative) to alkaline (ne-normative) basaltic lavas and scoriae; peralkaline felsic rocks (trachyte-rhyolite) crop out only on Pantelleria. Although most likely erupted through continental crust, basalts demonstrate no evidence of crustal contamination and are geochemically similar to oceanic island basalts (OIB). Despite their isotopic similarities, there are considerable compositional differences with respect to major and trace element geochemistry both between and within the two islands that are due to short-length scale mantle heterogeneity beneath the region as well as variability in partial melting and magma storage conditions. Published geophysical surveys suggest that lithospheric thickness beneath both islands is ~60 km; this is consistent with the results of our geochemical modelling (59-60 km), which also suggest mantle potential temperatures between 1415-1435°C, similar to other documented continental passive rifts. Although there is some compositional overlap between the three synthems at Linosa, in general the older magmas (Arena Bianca, 700 ka) formed as a result of ~5% partial melting of a depleted MORB mantle (DMM) source enriched with a relatively small amount of recycled MORB material, which differentiated in a shallow-level (~8 km) magma chamber prior to eruption whereas the younger magmas (Monte Bandiera, 530 ka) formed as a result of ~2% partial melting of a similar mantle source, which differentiated in a magma chamber at or below the base of the crust (~25 km). Pantelleria magmas formed from a higher degree (~6%) of partial melting of a DMM source enriched with a relatively greater amount of recycled MORB material with possibly other components. Data for the seamounts are scarce and compromised by significant seawater alteration; thus, these volcanic centers cannot be modelled but based on comparative geochemistry with the islands are likely the result of even smaller (60 km) lithosphere. Magmas stored in the higher-level chamber were more effectively homogenized and preserve a narrower compositional range. Despite the geophysical similarities between the two islands in terms of lithospheric thickness and crustal thinning, melt productivity has been greater at Pantelleria, producing a much larger island and sustaining felsic magmatism, which may ultimately be entirely due to the local occurrence of much more fusible mantle

    Geochemical constraints on basalt petrogenesis in the Strait of Sicily Rift Zone (Italy): Insights into the importance of short lengthscale mantle heterogeneity

    Get PDF
    Igneous activity from the late Miocene to historic time (most recently 1891 CE) in the Strait of Sicily has created two volcanic islands (Pantelleria and Linosa) and several seamounts. These volcanoes are dominated by transitional (ol + hy-normative) to alkaline (ne-normative) basaltic lavas and scoriae; volcanic felsic rocks (peralkaline trachyte-rhyolite) crop out only on Pantelleria. Although most likely erupted through continental crust, basalts demonstrate no evidence of crustal contamination and are geochemically similar to oceanic island basalts (OIB). Despite their isotopic similarities, there are considerable compositional differences with respect to major and trace element geochemistry both between and within the two islands that are due to short-length scale mantle heterogeneity beneath the region as well as variability in partial melting and magma storage conditions. Published geophysical surveys suggest that lithospheric thickness beneath both islands is ~60 km; this is consistent with the results of our geochemical modelling (59\u201360 km), which also suggest mantle potential temperatures between 1415 and 1435 \ub0C, similar to those documented in other continental passive rifts. Trace element and isotopic data reveal that the asthenosphere beneath the Strait of Sicily is heterogenous at both interisland (100s of km) and intra-island (10s of km) scales. Although there is some compositional overlap between the two major synthems at Linosa, in general the older magmas (Arena Bianca, 700 ka) formed as a result of ~5% partial melting of a depleted MORB mantle (DMM) source enriched with a relatively small amount of recycled MORB material, whereas the younger magmas (Monte Bandiera, 530 ka) formed as a result of ~2% partial melting of a similar mantle source. Pantelleria magmas formed from a higher degree (~6%) of partial melting of a DMM source with a relatively greater amount of recycled MORB material and possibly other components. Geochemical modelling also suggests the older magmas on Linosa differentiated at a much shallower level (~8 km) than the younger magmas (~25 km, at or below the base of the crust) prior to eruption. Magmas stored in higher-level reservoirs were effectively homogenized and preserve a narrower compositional range than magmas sourced from depth. Data for the seamounts are scarce and compromised by significant seawater alteration; thus, these volcanic centers cannot be modelled but based on comparative geochemistry with the islands are likely the result of even smaller (< 2%) degrees of partial melting beneath thicker (> 60 km) lithosphere. Despite the geophysical similarities between the two islands in terms of lithospheric thickness and crustal thinning, melt productivity has been greater at Pantelleria, producing a much larger island and sustaining felsic magmatism, which we hypothesize may ultimately be entirely due to the local occurrence of much more fusible mantle

    Contribution of advanced regeneration of Pinus Radiata D. Don. to transpiration by a fragment of Native forest in central Chile is out of proportion with the contribution to sapwood area

    Get PDF
    The transpiration of Nothofagus glauca (Phil.) Krasser and advanced Pinus radiata D. Don. regeneration was measured in a fragment of native N. glauca forest. Over the eight months of this study, P. radiata contributed approximately 60% of the total stand transpiration. This was out of proportion with the approximately 34% of the stand sapwood area contributed by P. radiata. This was due to the significantly greater sap flux density of the P. radiata compared to the N. glauca between May and October. Though the results are from a small study conducted as part of a larger experiment, it is argued that they suggest that invasion by P. radiata may substantially increase the risk from climate change to reserves of N. glauca forest in the Maule region of central Chile. In some reserves of N. glauca forest, Forestal Arauco S.A. manually removed P. radiata that regenerated after the wildfire of January 2017. This was a costly operation and there is a need for indices to assess competition. The ratio of sapwood area to leaf area is suggested as a potential index for assessing competition to identify stands at risk. © 2020 by the author

    VZV in biopsy-positive and -negative giant cell arteritis: Analysis of 100+ temporal arteries

    Get PDF
    Objective: Varicella-zoster virus (VZV) infection may trigger the inflammatory cascade that characterizes giant cell arteritis (GCA). Methods: Formalin-fixed, paraffin-embedded GCA-positive temporal artery (TA) biopsies (50 sections/TA) including adjacent skeletal muscle and normal TAs obtained postmortem from subjects >50 years of age were examined by immunohistochemistry for presence and distribution of VZV antigen and by ultrastructural examination for virions. Adjacent regions were examined by hematoxylin & eosin staining. VZV antigen–positive slides were analyzed by PCR for VZV DNA. Results: VZV antigen was found in 61/82 (74%) GCA-positive TAs compared with 1/13 (8%) normal TAs (p < 0.0001, relative risk 9.67, 95% confidence interval 1.46, 63.69). Most GCA-positive TAs contained viral antigen in skip areas. VZV antigen was present mostly in adventitia, followed by media and intima. VZV antigen was found in 12/32 (38%) skeletal muscles adjacent to VZV antigen–positive TAs. Despite formalin fixation, VZV DNA was detected in 18/45 (40%) GCA-positive VZV antigen–positive TAs, in 6/10 (60%) VZV antigen–positive skeletal muscles, and in one VZV antigen–positive normal TA. Varicella-zoster virions were found in a GCA-positive TA. In sections adjacent to those containing VZV, GCA pathology was seen in 89% of GCA-positive TAs but in none of 18 adjacent sections from normal TAs. Conclusions: Most GCA-positive TAs contained VZV in skip areas that correlated with adjacent GCA pathology, supporting the hypothesis that VZV triggers GCA immunopathology. Antiviral treatment may confer additional benefit to patients with GCA treated with corticosteroids, although the optimal antiviral regimen remains to be determined

    Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?

    Get PDF
    The effect of Eucalyptus plantations on water balance is thought to be more severe than for commercial alternatives such as Pinus species. Although this perception is firmly entrenched, even in the scientific community, only four direct comparisons of the effect on the water balance of a Eucalyptus species and a commercial alternative have been published. One of these, from South Africa, showed that Eucalyptus grandis caused a larger and more rapid reduction in streamflow than Pinus patula. The other three, one in South Australia and two in Chile, did not find any significant difference between the annual evapotranspiration of E. globulus and P. radiata after canopy closure. While direct comparisons are few, there are at least 57 published estimates of annual evapotranspiration of either a Eucalyptus or Pinus species. This paper presents a meta-analysis of these published data. Zhang et al. (2004) fitted a relationship between the crop factor and the climate wetness index to published data from catchment studies and proposed this approach for comparing land uses. We fitted the same model to the published data for Eucalyptus and Pinus and found that the single parameter of this model did not differ significantly between the two genera (p=0.48). This implies that for a given climate wetness index the two genera have similar annual water use. The residuals compared to this model were significantly correlated with soil depth for Eucalyptus, but this was not the case for Pinus. For Eucalyptus the model overestimates the crop factor on deep soils and underestimates the crop factor on shallow soils.</p
    • …
    corecore