5,548 research outputs found
Primordial Non-Gaussianity: Baryon Bias and Gravitational Collapse of Cosmic String Wakes
I compute the 3-D non-linear evolution of gas and dark matter fluids in the
neighbourhood of cosmic string wakes which are formed at high redshift
() for a ``realistic'' scenario of wake formation. These wakes
are the ones which stand out most prominently as cosmological sheets and are
expected to play a dominant r\^ole in the cosmic string model of structure
formation. Employing a high-resolution 3-D hydrodynamics code to evolve these
wakes until the present day yields results for the baryon bias generated in the
inner wake region. I find that today, wakes would be Mpc thick and
contain a 70% excess in the density of baryons over the dark matter density in
their centre. However, high density peaks in the wake region do not inherit a
baryon enhancement. I propose a mechanism for this erasure of the baryon excess
in spherically collapsed objects based on the geometry change around the
collapsing region. Further, I present heuristic arguments for the consequences
of this work for large scale structure in the cosmic string model and conclude
that the peculiarities of wake formation are unlikely to have significant
import on the discrepancy between power spectrum predictions and observations
in this model. If one invokes the nucleosynthesis bound on this
could be seen as strengthening the case against or for low Hubble
constants.Comment: 21 pages, 7 figures, 2 tables, prepared with the AASTeX package.
Minor modifications, results unchanged. ApJ in press, scheduled for Vol. 50
Identifying Significant Environmental Features Using Feature Recognition
The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-recognition capability because it may help analysts identify environmentally sensitive features in the landscape, including those relating to historic preservation, archaeology, endangered species habitat, and geology. LIDAR Analyst and Feature Analyst are a pair of geoprocessing software packages that have been developed by Textron Systems. Using this software, users can use LIDAR data to identify finely-scaled user-specified features. The softwareâs automated feature extraction saves time that might otherwise be spent manually analyzing images and digitizing features.
This report explores the capabilities and accuracy of this software by using LIDAR data to identify sinkholes throughout a small area in Kentucky. This report also discusses an alternative LIDAR-based geoprocessing methodology developed by the Kentucky Geological Society. The method relies on ArcGIS and Python scripting to identify sinkholes. The feasibility and applicability of these methodologies are compared, the workflow for each method is outlined, and the capabilities and limitations of each are noted. Sample resultsâthe identification of sinkholesâfrom each methodology are presented. The research team found the batch processing capability built into LIDAR and Feature Analyst adequate and beneficial for smaller projects, such as projects that prioritize the extraction of buildings, trees, and forest regions
Socioeconomic and Racial Disparities in Cancer Risk from Air Toxics in Maryland
We linked risk estimates from the U.S. Environmental Protection Agencyâs National Air Toxics Assessment (NATA) to racial and socioeconomic characteristics of census tracts in Maryland (2000 Census) to evaluate disparities in estimated cancer risk from exposure to air toxics by emission source category. In Maryland, the average estimated cancer risk across census tracts was highest from on-road sources (50% of total risk from nonbackground sources), followed by nonroad (25%), area (23%), and major sources (< 1%). Census tracts in the highest quartile defined by the fraction of African-American residents were three times more likely to be high risk (> 90th percentile of risk) than those in the lowest quartile (95% confidence interval, 2.0â5.0). Conversely, risk decreased as the proportion of whites increased (p < 0.001). Census tracts in the lowest quartile of socioeconomic position, as measured by various indicators, were 10â100 times more likely to be high risk than those in the highest quartile. We observed substantial risk disparities for on-road, area, and nonroad sources by socioeconomic measure and on-road and area sources by race. There was considerably less evidence of risk disparities from major source emissions. We found a statistically significant interaction between race and income, suggesting a stronger relationship between race and risk at lower incomes. This research demonstrates the utility of NATA for assessing regional environmental justice, identifies an environmental justice concern in Maryland, and suggests that on-road sources may be appropriate targets for policies intended to reduce the disproportionate environmental health burden among economically disadvantaged and minority populations
A Large-Scale Behavioral Screen to Identify Neurons Controlling Motor Programs in the Drosophila Brain
Drosophila is increasingly used for understanding the neural basis of behavior through genetically targeted manipulation of specific neurons. The primary approach in this regard has relied on the suppression of neuronal activity. Here, we report the results of a novel approach to find and characterize neural circuits by expressing neuronal activators to stimulate subsets of neurons to induce behavior. Classical electrophysiological studies demonstrated that stimulation of command neurons could activate neural circuits to trigger fixed action patterns. Our method was designed to find such command neurons for diverse behaviors by screening flies in which random subsets of brain cells were activated. We took advantage of the large collection of Gal4 lines from the NP project and crossed 835 Gal4 strains with relatively limited Gal4 expression in the brain to flies carrying a UAS transgene encoding TRPM8, a cold-sensitive ion channel. Low temperatures opened the TRPM8 channel in Gal4-expressing cells, leading to their excitation, and in many cases induced overt behavioral changes in adult flies. Paralysis was reproducibly observed in the progeny of crosses with 84 lines, whereas more specific behaviors were induced with 24 other lines. Stimulation performed using the heat-activated channel, TrpA1, resulted in clearer and more robust behaviors, including flight, feeding, and egg-laying. Through follow-up studies starting from this screen, we expect to find key components of the neural circuits underlying specific behaviors, thus providing a new avenue for their functional analysis.National Institute of Mental Health (U.S.) (Grant MH85958)Worcester Foundation for Biomedical ResearchJapan Society for the Promotion of Science (grant-in-aid)National Institute of Mental Health (U.S.) (Intramural Research Program
Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis
The question of âthe relationship between the individual and societyâ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the âmatrixial thinkingâ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality
Recommended from our members
Facilitating Neuron-Specific Genetic Manipulations in Drosophila melanogaster Using a Split GAL4 Repressor.
Efforts to map neural circuits have been galvanized by the development of genetic technologies that permit the manipulation of targeted sets of neurons in the brains of freely behaving animals. The success of these efforts relies on the experimenter's ability to target arbitrarily small subsets of neurons for manipulation, but such specificity of targeting cannot routinely be achieved using existing methods. In Drosophila melanogaster, a widely-used technique for refined cell type-specific manipulation is the Split GAL4 system, which augments the targeting specificity of the binary GAL4-UAS (Upstream Activating Sequence) system by making GAL4 transcriptional activity contingent upon two enhancers, rather than one. To permit more refined targeting, we introduce here the "Killer Zipper" (KZip+), a suppressor that makes Split GAL4 targeting contingent upon a third enhancer. KZip+ acts by disrupting both the formation and activity of Split GAL4 heterodimers, and we show how this added layer of control can be used to selectively remove unwanted cells from a Split GAL4 expression pattern or to subtract neurons of interest from a pattern to determine their requirement in generating a given phenotype. To facilitate application of the KZip+ technology, we have developed a versatile set of LexAop-KZip+ fly lines that can be used directly with the large number of LexA driver lines with known expression patterns. KZip+ significantly sharpens the precision of neuronal genetic control available in Drosophila and may be extended to other organisms where Split GAL4-like systems are used
Near-critical free-surface flows: Real fluid flow analysis
An open channel flow with a flow depth close to the critical depth is characterised by a curvilinear streamline flow field that results in steady free surface undulations. Near critical flows of practical relevance encompass the undular hydraulic jump when the flow changes from supercritical (F > 1) to subcritical (F 1). So far these flows were mainly studied based on ideal fluid flow computations, for which the flow is assumed irrotational and, thus, shear forces are absent. While the approach is accurate for critical flow conditions (F = 1) in weir and flumes, near-critical flows involve long distances reaches, and the effect of friction on the flow properties cannot be neglected. In the present study the characteristics of near-critical free-surface flows are reanalysed based on a model accounting for both the streamline curvature and friction effects. Based on the improved model, some better agreement with experimental results is found, thereby highlighting the main frictional features of the flow profiles
- âŠ