5,548 research outputs found

    Primordial Non-Gaussianity: Baryon Bias and Gravitational Collapse of Cosmic String Wakes

    Get PDF
    I compute the 3-D non-linear evolution of gas and dark matter fluids in the neighbourhood of cosmic string wakes which are formed at high redshift (z≃2240z\simeq 2240) for a ``realistic'' scenario of wake formation. These wakes are the ones which stand out most prominently as cosmological sheets and are expected to play a dominant r\^ole in the cosmic string model of structure formation. Employing a high-resolution 3-D hydrodynamics code to evolve these wakes until the present day yields results for the baryon bias generated in the inner wake region. I find that today, wakes would be 1.5h−11.5 h^{-1} Mpc thick and contain a 70% excess in the density of baryons over the dark matter density in their centre. However, high density peaks in the wake region do not inherit a baryon enhancement. I propose a mechanism for this erasure of the baryon excess in spherically collapsed objects based on the geometry change around the collapsing region. Further, I present heuristic arguments for the consequences of this work for large scale structure in the cosmic string model and conclude that the peculiarities of wake formation are unlikely to have significant import on the discrepancy between power spectrum predictions and observations in this model. If one invokes the nucleosynthesis bound on Ωb\Omega_b this could be seen as strengthening the case against Ωm=1\Omega_m=1 or for low Hubble constants.Comment: 21 pages, 7 figures, 2 tables, prepared with the AASTeX package. Minor modifications, results unchanged. ApJ in press, scheduled for Vol. 50

    Identifying Significant Environmental Features Using Feature Recognition

    Get PDF
    The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-recognition capability because it may help analysts identify environmentally sensitive features in the landscape, including those relating to historic preservation, archaeology, endangered species habitat, and geology. LIDAR Analyst and Feature Analyst are a pair of geoprocessing software packages that have been developed by Textron Systems. Using this software, users can use LIDAR data to identify finely-scaled user-specified features. The software’s automated feature extraction saves time that might otherwise be spent manually analyzing images and digitizing features. This report explores the capabilities and accuracy of this software by using LIDAR data to identify sinkholes throughout a small area in Kentucky. This report also discusses an alternative LIDAR-based geoprocessing methodology developed by the Kentucky Geological Society. The method relies on ArcGIS and Python scripting to identify sinkholes. The feasibility and applicability of these methodologies are compared, the workflow for each method is outlined, and the capabilities and limitations of each are noted. Sample results—the identification of sinkholes—from each methodology are presented. The research team found the batch processing capability built into LIDAR and Feature Analyst adequate and beneficial for smaller projects, such as projects that prioritize the extraction of buildings, trees, and forest regions

    Socioeconomic and Racial Disparities in Cancer Risk from Air Toxics in Maryland

    Get PDF
    We linked risk estimates from the U.S. Environmental Protection Agency’s National Air Toxics Assessment (NATA) to racial and socioeconomic characteristics of census tracts in Maryland (2000 Census) to evaluate disparities in estimated cancer risk from exposure to air toxics by emission source category. In Maryland, the average estimated cancer risk across census tracts was highest from on-road sources (50% of total risk from nonbackground sources), followed by nonroad (25%), area (23%), and major sources (< 1%). Census tracts in the highest quartile defined by the fraction of African-American residents were three times more likely to be high risk (> 90th percentile of risk) than those in the lowest quartile (95% confidence interval, 2.0–5.0). Conversely, risk decreased as the proportion of whites increased (p < 0.001). Census tracts in the lowest quartile of socioeconomic position, as measured by various indicators, were 10–100 times more likely to be high risk than those in the highest quartile. We observed substantial risk disparities for on-road, area, and nonroad sources by socioeconomic measure and on-road and area sources by race. There was considerably less evidence of risk disparities from major source emissions. We found a statistically significant interaction between race and income, suggesting a stronger relationship between race and risk at lower incomes. This research demonstrates the utility of NATA for assessing regional environmental justice, identifies an environmental justice concern in Maryland, and suggests that on-road sources may be appropriate targets for policies intended to reduce the disproportionate environmental health burden among economically disadvantaged and minority populations

    A Large-Scale Behavioral Screen to Identify Neurons Controlling Motor Programs in the Drosophila Brain

    Get PDF
    Drosophila is increasingly used for understanding the neural basis of behavior through genetically targeted manipulation of specific neurons. The primary approach in this regard has relied on the suppression of neuronal activity. Here, we report the results of a novel approach to find and characterize neural circuits by expressing neuronal activators to stimulate subsets of neurons to induce behavior. Classical electrophysiological studies demonstrated that stimulation of command neurons could activate neural circuits to trigger fixed action patterns. Our method was designed to find such command neurons for diverse behaviors by screening flies in which random subsets of brain cells were activated. We took advantage of the large collection of Gal4 lines from the NP project and crossed 835 Gal4 strains with relatively limited Gal4 expression in the brain to flies carrying a UAS transgene encoding TRPM8, a cold-sensitive ion channel. Low temperatures opened the TRPM8 channel in Gal4-expressing cells, leading to their excitation, and in many cases induced overt behavioral changes in adult flies. Paralysis was reproducibly observed in the progeny of crosses with 84 lines, whereas more specific behaviors were induced with 24 other lines. Stimulation performed using the heat-activated channel, TrpA1, resulted in clearer and more robust behaviors, including flight, feeding, and egg-laying. Through follow-up studies starting from this screen, we expect to find key components of the neural circuits underlying specific behaviors, thus providing a new avenue for their functional analysis.National Institute of Mental Health (U.S.) (Grant MH85958)Worcester Foundation for Biomedical ResearchJapan Society for the Promotion of Science (grant-in-aid)National Institute of Mental Health (U.S.) (Intramural Research Program

    Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis

    Get PDF
    The question of ‘the relationship between the individual and society’ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the ‘matrixial thinking’ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality

    Near-critical free-surface flows: Real fluid flow analysis

    Get PDF
    An open channel flow with a flow depth close to the critical depth is characterised by a curvilinear streamline flow field that results in steady free surface undulations. Near critical flows of practical relevance encompass the undular hydraulic jump when the flow changes from supercritical (F > 1) to subcritical (F 1). So far these flows were mainly studied based on ideal fluid flow computations, for which the flow is assumed irrotational and, thus, shear forces are absent. While the approach is accurate for critical flow conditions (F = 1) in weir and flumes, near-critical flows involve long distances reaches, and the effect of friction on the flow properties cannot be neglected. In the present study the characteristics of near-critical free-surface flows are reanalysed based on a model accounting for both the streamline curvature and friction effects. Based on the improved model, some better agreement with experimental results is found, thereby highlighting the main frictional features of the flow profiles
    • 

    corecore