247 research outputs found
Is Phaseolus vulgaris Leucoagglutinin (PHA-L) a Useful Marker for Labeling Neural Grafts?
The lectin Phaseolus vulgaris leucoagglutinin
(PHA-L) has come into wide use as an anterograde
neuroanatomical tracer. The ability of this
lectin to fill entire neurons and remain in place
over long periods suggested it might be an ideal
marker for donor cells to be grafted into hosts
for long survival periods. We have used the lectin
PHA-L to mark fetal rat olfactory bulb (OB)
cells prior to grafting into host rat OBs. Hosts
were sacrificed at various times up to 9 weeks after
grafting, and tissue was immunohistochemically
processed for PHA reactivity. After 2 and 4
weeks survival, sparse patterns of labeled cells
were observed within the host OBs. However, after
9 weeks survival, few if any labeled cells were
visible within host tissue. We conclude that
PHA-L may be a less than satisfactory marker
for fetal rat cells (other than astrocytes) which
are to be identified in host tissue after a period of
several weeks
A thermophysical study of the melting process in alkyl chain metal n-alkanoates: The thallium (I) series
The peculiar thermal behavior of the thallium(I) n-alkanoates series (consisting in several transitions between polymorphic and mesomorphic phases) in comparison with other metallic n-alkanoates series is stated. The allowance of highly accurate adiabatic heat capacity data permits a study of the CH2CH2 contributions to the lattice heat capacity curve at low temperature. Moreover, in this series an anomalous gradual enhancement of the lattice heat capacity has been interpreted from vibrational spectroscopy results as a noncooperative effect due to the internal hindered rotation of the alkyl chain (formation of gauche defects, even in the solid state). The thermodynamics of the âstepwise melting processâ from the totally ordered solid at low temperature to the isotropic liquid is based on a revised lattice heat-capacity curve. This was used to evaluate the energy and entropy not only of the clear first order transitions present in the series but also of the described noncooperative effect. The CH2CH2 enthalpy and entropy contribution for this series is estimated and a comparison with the published values for other series is carried out. Moreover, the texture of the mesophases is revealed by polarized light microscopy. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69602/2/JCPSA6-111-8-3590-1.pd
The thermodynamics of ammonium scheelites IV. Heat capacity of ammonium metaperiodate NH4IO4 from 8 to 324 K
The heat capacity of the scheelite salt ammonium metaperiodate, NH4IO4, was measured from 8 to 324 K using adiabatic calorimetry. The heat capacity against temperature curve shows an excess with a maximum around 200 K as is typical of other ammonium scheelites. A small peak in the curve near 270 K resulted from melting a saturated aqueous solution trapped in the lattice. Values of the standard molar thermodynamic quantities for NH4IO4 are presented up to 320 K. Values for Cp, mo(298.15 K)/R, [Delta]0TSmo(298.15 K)/R, and [Phi]mo(298.15 K, 0)/R are (18.58+/-0.02), (23.03+/-0.04), and (11.20+/-0.02), respectively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26984/1/0000551.pd
The thermodynamics of ammonium scheelites V. Heat capacity of deuterated ammonium metaperiodate ND4IO4 from 8 to 329 K
The heat capacity of the scheelite salt: deuterated ammonium metaperiodate, ND4IO4, was measured from 8 to 329 K using adiabatic calorimetry. The heat capacity against temperature curve shows a broad maximum with a peak around 200 K which is typical of other ammonium scheelites. A small peak in the curve around 275 K resulted from fusion of a saturated D2O salt solution trapped in the lattice. Values of the standard molar thermodynamic quantities for ND4IO4 are presented up to 330 K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26999/1/0000566.pd
Charged pion form factor between =0.60 and 2.45 GeV. I. Measurements of the cross section for the H() reaction
Cross sections for the reaction H() were measured in Hall
C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF
high-intensity, continous electron beam in order to determine the charged pion
form factor. Data were taken for central four-momentum transfers ranging from
=0.60 to 2.45 GeV at an invariant mass of the virtual photon-nucleon
system of =1.95 and 2.22 GeV. The measured cross sections were separated
into the four structure functions , , , and
. The various parts of the experimental setup and the analysis
steps are described in detail, including the calibrations and systematic
studies, which were needed to obtain high precision results. The different
types of systematic uncertainties are also discussed. The results for the
separated cross sections as a function of the Mandelstam variable at the
different values of are presented. Some global features of the data are
discussed, and the data are compared with the results of some model
calculations for the reaction H().Comment: 26 pages, 23 figure
Measurements of Deuteron Photodisintegration up to 4.0 GeV
The first measurements of the differential cross section for the d(gamma,p)n
reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator
Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton
center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in
reasonable agreement with previous measurements at lower energy. The 89 and 69
degree data show constituent-counting-rule behavior up to 4.0 GeV photon
energy. The 36 and 52 degree data disagree with the counting rule behavior. The
quantum chromodynamics (QCD) model of nuclear reactions involving reduced
amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript
Separated Response Function Ratios in Exclusive, Forward pi^{+/-} Electroproduction
The study of exclusive electroproduction on the nucleon,
including separation of the various structure functions, is of interest for a
number of reasons. The ratio is
sensitive to isoscalar contamination to the dominant isovector pion exchange
amplitude, which is the basis for the determination of the charged pion form
factor from electroproduction data. A change in the value of
from unity at small , to 1/4 at
large , would suggest a transition from coupling to a (virtual) pion to
coupling to individual quarks. Furthermore, the mentioned ratios may show an
earlier approach to pQCD than the individual cross sections. We have performed
the first complete separation of the four unpolarized electromagnetic structure
functions above the dominant resonances in forward, exclusive
electroproduction on the deuteron at central values of 0.6, 1.0, 1.6
GeV at =1.95 GeV, and GeV at =2.22 GeV. Here, we
present the and cross sections, with emphasis on and , and
compare them with theoretical calculations. Results for the separated ratio
indicate dominance of the pion-pole diagram at low , while results
for are consistent with a transition between pion knockout and quark
knockout mechanisms.Comment: 6 pages, 3 figure
A Study of the Quasi-elastic (e,e'p) Reaction on C, Fe and Au
We report the results from a systematic study of the quasi-elastic (e,e'p)
reaction on C, Fe and Au performed at Jefferson Lab. We
have measured nuclear transparency and extracted spectral functions (corrected
for radiation) over a Q range of 0.64 - 3.25 (GeV/c) for all three
nuclei. In addition we have extracted separated longitudinal and transverse
spectral functions at Q of 0.64 and 1.8 (GeV/c) for these three nuclei
(except for Au at the higher Q). The spectral functions are
compared to a number of theoretical calculations. The measured spectral
functions differ in detail but not in overall shape from most of the
theoretical models. In all three targets the measured spectral functions show
considerable excess transverse strength at Q = 0.64 (GeV/c), which is
much reduced at 1.8 (GeV/c).Comment: For JLab E91013 Collaboration, 19 pages, 20 figures, 3 table
Determination of the pion charge form factor for Q^2=0.60-1.60 GeV^2
The data analysis for the reaction H(e,e' pi^+)n, which was used to determine
values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2,
has been repeated with careful inspection of all steps and special attention to
systematic uncertainties. Also the method used to extract Fpi from the measured
longitudinal cross section was critically reconsidered. Final values for the
separated longitudinal and transverse cross sections and the extracted values
of Fpi are presented.Comment: 11 pages, 6 figure
- âŠ