5 research outputs found

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Common genetic variants influence human subcortical brain structures

    No full text
    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction

    A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee

    No full text
    Many clinical trials have evaluated the benefit of long-term use of antiplatelet drugs in reducing the risk of clinical thrombotic events. Aspirin and ticlopidine have been shown to be effective, but both have potentially serious adverse effects. Clopidogrel, a new thienopyridine derivative similar to ticlopidine, is an inhibitor of platelet aggregation induced by adenosine diphosphate. METHODS: CAPRIE was a randomised, blinded, international trial designed to assess the relative efficacy of clopidogrel (75 mg once daily) and aspirin (325 mg once daily) in reducing the risk of a composite outcome cluster of ischaemic stroke, myocardial infarction, or vascular death; their relative safety was also assessed. The population studied comprised subgroups of patients with atherosclerotic vascular disease manifested as either recent ischaemic stroke, recent myocardial infarction, or symptomatic peripheral arterial disease. Patients were followed for 1 to 3 years. FINDINGS: 19,185 patients, with more than 6300 in each of the clinical subgroups, were recruited over 3 years, with a mean follow-up of 1.91 years. There were 1960 first events included in the outcome cluster on which an intention-to-treat analysis showed that patients treated with clopidogrel had an annual 5.32% risk of ischaemic stroke, myocardial infarction, or vascular death compared with 5.83% with aspirin. These rates reflect a statistically significant (p = 0.043) relative-risk reduction of 8.7% in favour of clopidogrel (95% Cl 0.3-16.5). Corresponding on-treatment analysis yielded a relative-risk reduction of 9.4%. There were no major differences in terms of safety. Reported adverse experiences in the clopidogrel and aspirin groups judged to be severe included rash (0.26% vs 0.10%), diarrhoea (0.23% vs 0.11%), upper gastrointestinal discomfort (0.97% vs 1.22%), intracranial haemorrhage (0.33% vs 0.47%), and gastrointestinal haemorrhage (0.52% vs 0.72%), respectively. There were ten (0.10%) patients in the clopidogrel group with significant reductions in neutrophils (< 1.2 x 10(9)/L) and 16 (0.17%) in the aspirin group. INTERPRETATION: Long-term administration of clopidogrel to patients with atherosclerotic vascular disease is more effective than aspirin in reducing the combined risk of ischaemic stroke, myocardial infarction, or vascular death. The overall safety profile of clopidogrel is at least as good as that of medium-dose aspirin
    corecore