26 research outputs found

    Estimating Genetic Variability in Non-Model Taxa: A General Procedure for Discriminating Sequence Errors from Actual Variation

    Get PDF
    Genetic variation is the driving force of evolution and as such is of central interest for biologists. However, inadequate discrimination of errors from true genetic variation could lead to incorrect estimates of gene copy number, population genetic parameters, phylogenetic relationships and the deposition of gene and protein sequences in databases that are not actually present in any organism. Misincorporation errors in multi-template PCR cloning methods, still commonly used for obtaining novel gene sequences in non-model species, are difficult to detect, as no previous information may be available about the number of expected copies of genes belonging to multi-gene families. However, studies employing these techniques rarely describe in any great detail how errors arising in the amplification process were detected and accounted for. Here, we estimated the rate of base misincorporation of a widely-used PCR-cloning method, using a single copy mitochondrial gene from a single individual to minimise variation in the template DNA, as 1.62×10−3 errors per site, or 9.26×10−5 per site per duplication. The distribution of errors among sequences closely matched that predicted by a binomial distribution function. The empirically estimated error rate was applied to data, obtained using the same methods, from the Phospholipase A2 toxin family from the pitviper Ovophis monticola. The distribution of differences detected closely matched the expected distribution of errors and we conclude that, when undertaking gene discovery or assessment of genetic diversity using this error-prone method, it will be informative to empirically determine the rate of base misincorporation

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo

    The impact of currently licensed therapies on viral and immune responses in Chronic Hepatitis B: considerations for future novel therapeutics.

    Get PDF
    Despite the availability of a preventative vaccine, chronic hepatitis B (CHB) remains a global healthcare challenge with the risk of disease progression due to cirrhosis and hepatocellular carcinoma. Although current treatment strategies, interferon and nucleos(t)ide analogues have contributed to reducing morbidity and mortality related to CHB, these therapies are limited in providing functional cure. The treatment paradigm in CHB is rapidly evolving with a number of new agents in the developmental pipeline. However, until novel agents with functional cure capability are available in the clinical setting, there is a pressing need to optimize currently licensed therapies. Here, we discuss current agents used alone and/or in combination strategies along with the impact of these therapies on viral and immune responses. Novel treatment strategies are outlined, and the potential role of current therapies in the employment of pipeline agents is discussedWellcome Trust Clinical Research Training Fellowship (107389/Z/15/Z)NIHR Academic Clinical LectureshipBarts Charity Project Grants (723/1795 and MGU/0406NIHR Research for patient benefit award (PB‐PG‐0614‐34087) to PTF
    corecore