1,188 research outputs found

    Approximate Message Passing for Underdetermined Audio Source Separation

    Get PDF
    Approximate message passing (AMP) algorithms have shown great promise in sparse signal reconstruction due to their low computational requirements and fast convergence to an exact solution. Moreover, they provide a probabilistic framework that is often more intuitive than alternatives such as convex optimisation. In this paper, AMP is used for audio source separation from underdetermined instantaneous mixtures. In the time-frequency domain, it is typical to assume a priori that the sources are sparse, so we solve the corresponding sparse linear inverse problem using AMP. We present a block-based approach that uses AMP to process multiple time-frequency points simultaneously. Two algorithms known as AMP and vector AMP (VAMP) are evaluated in particular. Results show that they are promising in terms of artefact suppression.Comment: Paper accepted for 3rd International Conference on Intelligent Signal Processing (ISP 2017

    Environmental Sound Classification with Parallel Temporal-spectral Attention

    Full text link
    Convolutional neural networks (CNN) are one of the best-performing neural network architectures for environmental sound classification (ESC). Recently, temporal attention mechanisms have been used in CNN to capture the useful information from the relevant time frames for audio classification, especially for weakly labelled data where the onset and offset times of the sound events are not applied. In these methods, however, the inherent spectral characteristics and variations are not explicitly exploited when obtaining the deep features. In this paper, we propose a novel parallel temporal-spectral attention mechanism for CNN to learn discriminative sound representations, which enhances the temporal and spectral features by capturing the importance of different time frames and frequency bands. Parallel branches are constructed to allow temporal attention and spectral attention to be applied respectively in order to mitigate interference from the segments without the presence of sound events. The experiments on three environmental sound classification (ESC) datasets and two acoustic scene classification (ASC) datasets show that our method improves the classification performance and also exhibits robustness to noise.Comment: submitted to INTERSPEECH202

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1

    Investigations of supernovae and supernova remnants in the era of SKA

    Full text link
    Two main physical mechanisms are used to explain supernova explosions: thermonuclear explosion of a white dwarf(Type Ia) and core collapse of a massive star (Type II and Type Ib/Ic). Type Ia supernovae serve as distance indicators that led to the discovery of the accelerating expansion of the Universe. The exact nature of their progenitor systems however remain unclear. Radio emission from the interaction between the explosion shock front and its surrounding CSM or ISM provides an important probe into the progenitor star's last evolutionary stage. No radio emission has yet been detected from Type Ia supernovae by current telescopes. The SKA will hopefully detect radio emission from Type Ia supernovae due to its much better sensitivity and resolution. There is a 'supernovae rate problem' for the core collapse supernovae because the optically dim ones are missed due to being intrinsically faint and/or due to dust obscuration. A number of dust-enshrouded optically hidden supernovae should be discovered via SKA1-MID/survey, especially for those located in the innermost regions of their host galaxies. Meanwhile, the detection of intrinsically dim SNe will also benefit from SKA1. The detection rate will provide unique information about the current star formation rate and the initial mass function. A supernova explosion triggers a shock wave which expels and heats the surrounding CSM and ISM, and forms a supernova remnant (SNR). It is expected that more SNRs will be discovered by the SKA. This may decrease the discrepancy between the expected and observed numbers of SNRs. Several SNRs have been confirmed to accelerate protons, the main component of cosmic rays, to very high energy by their shocks. This brings us hope of solving the Galactic cosmic ray origin's puzzle by combining the low frequency (SKA) and very high frequency (Cherenkov Telescope Array: CTA) bands' observations of SNRs.Comment: To be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14

    Matrix of Polynomials Model based Polynomial Dictionary Learning Method for Acoustic Impulse Response Modeling

    Get PDF
    We study the problem of dictionary learning for signals that can be represented as polynomials or polynomial matrices, such as convolutive signals with time delays or acoustic impulse responses. Recently, we developed a method for polynomial dictionary learning based on the fact that a polynomial matrix can be expressed as a polynomial with matrix coefficients, where the coefficient of the polynomial at each time lag is a scalar matrix. However, a polynomial matrix can be also equally represented as a matrix with polynomial elements. In this paper, we develop an alternative method for learning a polynomial dictionary and a sparse representation method for polynomial signal reconstruction based on this model. The proposed methods can be used directly to operate on the polynomial matrix without having to access its coefficients matrices. We demonstrate the performance of the proposed method for acoustic impulse response modeling.Comment: 5 pages, 2 figure

    A joint separation-classification model for sound event detection of weakly labelled data

    Get PDF
    Source separation (SS) aims to separate individual sources from an audio recording. Sound event detection (SED) aims to detect sound events from an audio recording. We propose a joint separation-classification (JSC) model trained only on weakly labelled audio data, that is, only the tags of an audio recording are known but the time of the events are unknown. First, we propose a separation mapping from the time-frequency (T-F) representation of an audio to the T-F segmentation masks of the audio events. Second, a classification mapping is built from each T-F segmentation mask to the presence probability of each audio event. In the source separation stage, sources of audio events and time of sound events can be obtained from the T-F segmentation masks. The proposed method achieves an equal error rate (EER) of 0.14 in SED, outperforming deep neural network baseline of 0.29. Source separation SDR of 8.08 dB is obtained by using global weighted rank pooling (GWRP) as probability mapping, outperforming the global max pooling (GMP) based probability mapping giving SDR at 0.03 dB. Source code of our work is published.Comment: Accepted by ICASSP 201

    Large-scale weakly supervised audio classification using gated convolutional neural network

    Get PDF
    In this paper, we present a gated convolutional neural network and a temporal attention-based localization method for audio classification, which won the 1st place in the large-scale weakly supervised sound event detection task of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 challenge. The audio clips in this task, which are extracted from YouTube videos, are manually labeled with one or a few audio tags but without timestamps of the audio events, which is called as weakly labeled data. Two sub-tasks are defined in this challenge including audio tagging and sound event detection using this weakly labeled data. A convolutional recurrent neural network (CRNN) with learnable gated linear units (GLUs) non-linearity applied on the log Mel spectrogram is proposed. In addition, a temporal attention method is proposed along the frames to predicate the locations of each audio event in a chunk from the weakly labeled data. We ranked the 1st and the 2nd as a team in these two sub-tasks of DCASE 2017 challenge with F value 55.6\% and Equal error 0.73, respectively.Comment: submitted to ICASSP2018, summary on the 1st place system in DCASE2017 task4 challeng

    Audio Set classification with attention model: A probabilistic perspective

    Get PDF
    This paper investigates the classification of the Audio Set dataset. Audio Set is a large scale weakly labelled dataset of sound clips. Previous work used multiple instance learning (MIL) to classify weakly labelled data. In MIL, a bag consists of several instances, and a bag is labelled positive if at least one instances in the audio clip is positive. A bag is labelled negative if all the instances in the bag are negative. We propose an attention model to tackle the MIL problem and explain this attention model from a novel probabilistic perspective. We define a probability space on each bag, where each instance in the bag has a trainable probability measure for each class. Then the classification of a bag is the expectation of the classification output of the instances in the bag with respect to the learned probability measure. Experimental results show that our proposed attention model modeled by fully connected deep neural network obtains mAP of 0.327 on Audio Set dataset, outperforming the Google's baseline of 0.314 and recurrent neural network of 0.325.Comment: Accepted by ICASSP 201
    • …
    corecore