13 research outputs found

    Three-Dimensional Resolvable Plasmonic Concentric Compound Lens: Approaching the Axial Resolution from Microscale to Nanoscale

    No full text
    We propose the design and working principle of a plasmonic concentric compound lens (CCL) comprising inner circular nanoslits and outer circular nanogrooves. Dual-wavelength operations have been achieved for 650 and 750 nm at nanoscale and microscale focal lengths along with their depth of focus (DOF). By tuning the arrangement of nanogrooves, the axial resolution can be modulated and the narrowest DOF is achieved by a design of gradually decreasing groove width. For the ultrahigh tunability of axial resolution, DOF over 400 nm for both working wavelengths is also achieved. We not only developed an approximate-perturbed-focus model for explaining the performance of DOF but also found an extraordinary way to improve the resolution. The enhanced resonance of central disk as nannoantenna in CCL also has great influence on nanofocusing with different deigns of outer nanogrooves. This work provides new sight of focusing ability governed by the general optical nanogrooves. The optimized CCL shows excellent focusing performance with a lateral resolution down to 0.32λ (λ = 650 nm), which is the best resolving ability achieved thus far in the near field region with a long focal length up to 500 nm

    Distributed Bragg Reflectors as Broadband and Large-Area Platforms for Light-Coupling Enhancement in 2D Transition-Metal Dichalcogenides

    No full text
    Two-dimensional (2D) semiconductors, particularly the direct-gap monolayer transition metal dichalcogenides (TMDs), are currently being developed for various atomically thin optoelectronic devices. However, practical applications are hindered by their low quantum efficiencies in light emissions and absorptions. While photonic cavities and metallic plasmonic structures can significantly enhance the light–matter interactions in TMDs, the narrow spectral resonance and the local hot spots considerably limit the applications when broadband and large area are required. Here, we demonstrate that a properly designed distributed Bragg reflector (DBR) can be an ideal platform for light-coupling enhancement in 2D TMDs. The main idea is based on engineering the amplitude and phase of optical reflection from the DBR to produce optimal substrate-induced interference. We show that the photoluminescence, Raman, and second harmonic generation signals of monolayer WSe<sub>2</sub> can be enhanced by a factor of 26, 34, and 58, respectively. The proposed DBR substrates pave the way for developing a range of 2D optoelectronic devices for broadband and large-area applications

    Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers

    No full text
    Optical second harmonic generation (SHG) is known as a sensitive probe to the crystalline symmetry of few-layer transition metal dichalcogenides (TMDs). Layer-number dependent and polarization resolved SHG have been observed for the special case of Bernal stacked few-layer TMDs, but it remains largely unexplored for structures deviated from this ideal stacking order. Here we report on the SHG from homo- and heterostructural TMD bilayers formed by artificial stacking with an arbitrary stacking angle. The SHG from the twisted bilayers is a coherent superposition of the SH fields from the individual layers, with a phase difference depending on the stacking angle. Such an interference effect is insensitive to the constituent layered materials and thus applicable to hetero-stacked bilayers. A proof-of-concept demonstration of using the SHG to probe the domain boundary and crystal polarity of mirror twins formed in chemically grown TMDs is also presented. We show here that the SHG is an efficient, sensitive, and nondestructive characterization for the stacking orientation, crystal polarity, and domain boundary of van der Waals heterostructures made of noncentrosymmetric layered materials

    Submicron Memtransistors Made from Monocrystalline Molybdenum Disulfide

    No full text
    Multiterminal memtransistors made from two-dimensional (2D) materials have garnered increasing attention in the pursuit of low-power heterosynaptic neuromorphic circuits. However, existing 2D memtransistors tend to necessitate high set voltages (>1 V) or feature defective channels, posing concerns regarding material integrity and intrinsic properties. Herein, we present a monocrystalline monolayer MoS2 memtransistor designed for operation within submicron regimes. Under reverse drain bias sweeps, our experiments reveal memristive behavior within the device, further controllable through modulation of the gate terminal. This controllability facilitates the consistent manifestation of multistate memory effects. Notably, the memtransistor behavior becomes more significant as the channel length diminishes, particularly with channel lengths below 1.6 μm, showcasing an increase in the switching ratio alongside a decrease in the set voltage with the decreasing channel length. Our optimized memtransistor demonstrates the ability to exhibit individual resistance states spanning 5 orders of magnitude, with switching drain voltages of approximately 0.05 V. To elucidate these findings, we investigate hot carrier effects and their interplay with oxide traps within the HfO2 dielectric. This work highlights the importance of memtransisor behavior in highly scaled 2D transistors, particularly those featuring low contact resistances. This understanding holds the potential to tailor memory characteristics essential for the development of energy-efficient neuromorphic devices

    Hysteresis-Free Contact Doping for High-Performance Two-Dimensional Electronics

    No full text
    Contact doping is considered crucial for reducing the contact resistance of two-dimensional (2D) transistors. However, a process for achieving robust contact doping for 2D electronics is lacking. Here, we developed a two-step doping method for effectively doping 2D materials through a defect-repairing process. The method achieves strong and hysteresis-free doping and is suitable for use with the most widely used transition-metal dichalcogenides. Through our method, we achieved a record-high sheet conductance (0.16 mS·sq–1 without gating) of monolayer MoS2 and a high mobility and carrier concentration (4.1 × 1013 cm–2). We employed our robust method for the successful contact doping of a monolayer MoS2 Au-contact device, obtaining a contact resistance as low as 1.2 kΩ·μm. Our method represents an effective means of fabricating high-performance 2D transistors

    Investigations on Diamond Nanostructuring of Different Morphologies by the Reactive-Ion Etching Process and Their Potential Applications

    No full text
    We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O<sub>2</sub>/CF<sub>4</sub> process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N<sub>2</sub>-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp<sup>2</sup>-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film

    Spectroscopic Signatures for Interlayer Coupling in MoS<sub>2</sub>–WSe<sub>2</sub> van der Waals Stacking

    No full text
    Stacking of MoS<sub>2</sub> and WSe<sub>2</sub> monolayers is conducted by transferring triangular MoS<sub>2</sub> monolayers on top of WSe<sub>2</sub> monolayers, all grown by chemical vapor deposition (CVD). Raman spectroscopy and photoluminescence (PL) studies reveal that these mechanically stacked monolayers are not closely coupled, but after a thermal treatment at 300 °C, it is possible to produce van der Waals solids consisting of two interacting transition metal dichalcogenide (TMD) monolayers. The layer-number sensitive Raman out-of-plane mode A<sup>2</sup><sub>1g</sub> for WSe<sub>2</sub> (309 cm<sup>–1</sup>) is found sensitive to the coupling between two TMD monolayers. The presence of interlayer excitonic emissions and the changes in other intrinsic Raman modes such as E″ for MoS<sub>2</sub> at 286 cm<sup>–1</sup> and A<sup>2</sup><sub>1g</sub> for MoS<sub>2</sub> at around 463 cm<sup>–1</sup> confirm the enhancement of the interlayer coupling

    Large-Area Synthesis of Highly Crystalline WSe<sub>2</sub> Monolayers and Device Applications

    No full text
    The monolayer transition metal dichalcogenides have recently attracted much attention owing to their potential in valleytronics, flexible and low-power electronics, and optoelectronic devices. Recent reports have demonstrated the growth of large-size two-dimensional MoS<sub>2</sub> layers by the sulfurization of molybdenum oxides. However, the growth of a transition metal selenide monolayer has still been a challenge. Here we report that the introduction of hydrogen in the reaction chamber helps to activate the selenization of WO<sub>3</sub>, where large-size WSe<sub>2</sub> monolayer flakes or thin films can be successfully grown. The top-gated field-effect transistors based on WSe<sub>2</sub> monolayers using ionic gels as the dielectrics exhibit ambipolar characteristics, where the hole and electron mobility values are up to 90 and 7 cm<sup>2</sup>/Vs, respectively. These films can be transferred onto arbitrary substrates, which may inspire research efforts to explore their properties and applications. The resistor-loaded inverter based on a WSe<sub>2</sub> film, with a gain of ∼13, further demonstrates its applicability for logic-circuit integrations

    Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe<sub>2</sub> by Hydrohalic Acid Treatment

    No full text
    Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe<sub>2</sub> monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe<sub>2</sub> monolayers through the <i>p</i>-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe<sub>2</sub> layers. Our results suggest that the HBr treatment not only reduces the <i>n</i>-doping in MoSe<sub>2</sub> but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs

    Low-Threshold Plasmonic Lasers on a Single-Crystalline Epitaxial Silver Platform at Telecom Wavelength

    No full text
    We report on the first demonstration of metal–insulator–semiconductor-type plasmonic lasers at the telecom wavelength (∼1.3 μm) using top-down fabricated semiconductor waveguides on single-crystalline metallic platforms formed using epitaxially grown Ag films. The critical role of the Ag film thickness in sustaining plasmonic lasing at the telecom wavelength is investigated systematically. Low-threshold (0.2 MW/cm<sup>2</sup>) and continuous-wave operation of plasmonic lasing at cryogenic temperatures can be achieved on a 150 nm Ag platform with minimum radiation leakage into the substrate. Plasmonic lasing occurs preferentially through higher-order surface-plasmon-polariton modes, which exhibit a higher mode confinement factor, lower propagation loss, and better field–gain coupling. We observed plasmonic lasing up to ∼200 K under pulsed excitations. The plasmonic lasers on large-area epitaxial Ag films open up a scalable platform for on-chip integrations of plasmonics and optoelectronics at the telecom wavelength
    corecore