333 research outputs found

    Association between active commuting and incident cardiovascular disease, cancer, and mortality: prospective cohort study

    Get PDF
    Objective: To investigate the association between active commuting and incident cardiovascular disease (CVD), cancer, and all cause mortality. Design: Prospective population based study. Setting: UK Biobank. Participants: 263 450 participants (106 674 (52%) women; mean age 52.6), recruited from 22 sites across the UK. The exposure variable was the mode of transport used (walking, cycling, mixed mode v non-active (car or public transport)) to commute to and from work on a typical day. Main outcome measures: Incident (fatal and non-fatal) CVD and cancer, and deaths from CVD, cancer, or any causes. Results: 2430 participants died (496 were related to CVD and 1126 to cancer) over a median of 5.0 years (interquartile range 4.3-5.5) follow-up. There were 3748 cancer and 1110 CVD events. In maximally adjusted models, commuting by cycle and by mixed mode including cycling were associated with lower risk of all cause mortality (cycling hazard ratio 0.59, 95% confidence interval 0.42 to 0.83, P=0.002; mixed mode cycling 0.76, 0.58 to 1.00, P<0.05), cancer incidence (cycling 0.55, 0.44 to 0.69, P<0.001; mixed mode cycling 0.64, 0.45 to 0.91, P=0.01), and cancer mortality (cycling 0.60, 0.40 to 0.90, P=0.01; mixed mode cycling 0.68, 0.57 to 0.81, P<0.001). Commuting by cycling and walking were associated with a lower risk of CVD incidence (cycling 0.54, 0.33 to 0.88, P=0.01; walking 0.73, 0.54 to 0.99, P=0.04) and CVD mortality (cycling 0.48, 0.25 to 0.92, P=0.03; walking 0.64, 0.45 to 0.91, P=0.01). No statistically significant associations were observed for walking commuting and all cause mortality or cancer outcomes. Mixed mode commuting including walking was not noticeably associated with any of the measured outcomes. Conclusions: Cycle commuting was associated with a lower risk of CVD, cancer, and all cause mortality. Walking commuting was associated with a lower risk of CVD independent of major measured confounding factors. Initiatives to encourage and support active commuting could reduce risk of death and the burden of important chronic conditions

    The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent

    Get PDF
    Aims: The data regarding the associations of body mass index (BMI) with cardiovascular (CVD) risk, especially for those at the low categories of BMI, are conflicting. The aim of our study was to examine the associations of body composition (assessed by five different measures) with incident CVD outcomes in healthy individuals. Methods and results: A total of 296 535 participants (57.8% women) of white European descent without CVD at baseline from the UK biobank were included. Exposures were five different measures of adiposity. Fatal and non-fatal CVD events were the primary outcome. Low BMI (≤18.5 kg m−2) was associated with higher incidence of CVD and the lowest CVD risk was exhibited at BMI of 22–23 kg m−2 beyond, which the risk of CVD increased. This J-shaped association attenuated substantially in subgroup analyses, when we excluded participants with comorbidities. In contrast, the associations for the remaining adiposity measures were more linear; 1 SD increase in waist circumference was associated with a hazard ratio of 1.16 [95% confidence interval (CI) 1.13–1.19] for women and 1.10 (95% CI 1.08–1.13) for men with similar magnitude of associations for 1 SD increase in waist-to-hip ratio, waist-to-height ratio, and percentage body fat mass. Conclusion: Increasing adiposity has a detrimental association with CVD health in middle-aged men and women. The association of BMI with CVD appears more susceptible to confounding due to pre-existing comorbidities when compared with other adiposity measures. Any public misconception of a potential ‘protective’ effect of fat on CVD risk should be challenged

    Associations between diabetes and both cardiovascular disease and all-cause mortality are modified by grip strength: evidence from UK Biobank, a prospective population-based cohort study

    Get PDF
    OBJECTIVE Grip strength and diabetes are predictors of mortality and cardiovascular disease (CVD), but whether these risk factors interact to predispose to adverse health outcomes is unknown. This study determined the interactions between diabetes and grip strength and their association with health outcomes. RESEARCH DESIGN AND METHODS We undertook a prospective, general population cohort study by using UK Biobank. Cox proportional hazards models were used to explore the associations between both grip strength and diabetes and the outcomes of all-cause mortality and CVD incidence/mortality as well as to test for interactions between diabetes and grip strength. RESULTS 347,130 UK Biobank participants with full data available (mean age 55.9 years, BMI 27.2 kg/m2, 54.2% women) were included in the analysis, of which 13,373 (4.0%) had diabetes. Over a median follow-up of 4.9 years (range 3.3–7.8 years), 6,209 died (594 as a result of CVD), and 4,301 developed CVD. Participants with diabetes were at higher risk of all-cause and CVD mortality and CVD incidence. Significant interactions (P < 0.05) existed whereby the risk of CVD mortality was higher in participants with diabetes with low (hazard ratio [HR] 4.05 [95% CI 2.72, 5.80]) versus high (HR 1.46 [0.87, 2.46]) grip strength. Similar results were observed for all-cause mortality and CVD incidence. CONCLUSIONS Risk of adverse health outcomes among people with diabetes is lower in those with high grip strength. Low grip strength may be useful to identify a higher-risk subgroup of patients with diabetes. Intervention studies are required to determine whether resistance exercise can reduce risk

    Association of injury related hospital admissions with commuting by bicycle in the UK: prospective population based study

    Get PDF
    Objective: To determine whether bicycle commuting is associated with risk of injury. Design: Prospective population based study. Setting: UK Biobank. Participants: 230 390 commuters (52.1% women; mean age 52.4 years) recruited from 22 sites across the UK compared by mode of transport used (walking, cycling, mixed mode versus non-active (car or public transport)) to commute to and from work on a typical day. Main outcome measure: First incident admission to hospital for injury. Results: 5704 (2.5%) participants reported cycling as their main form of commuter transport. Median follow-up was 8.9 years (interquartile range 8.2-9.5 years), and overall 10 241 (4.4%) participants experienced an injury. Injuries occurred in 397 (7.0%) of the commuters who cycled and 7698 (4.3%) of the commuters who used a non-active mode of transport. After adjustment for major confounding sociodemographic, health, and lifestyle factors, cycling to work was associated with a higher risk of injury compared with commuting by a non-active mode (hazard ratio 1.45, 95% confidence interval 1.30 to 1.61). Similar trends were observed for commuters who used mixed mode cycling. Walking to work was not associated with a higher risk of injury. Longer cycling distances during commuting were associated with a higher risk of injury, but commute distance was not associated with injury in non-active commuters. Cycle commuting was also associated with a higher number of injuries when the external cause was a transport related incident (incident rate ratio 3.42, 95% confidence interval 3.00 to 3.90). Commuters who cycled to work had a lower risk of cardiovascular disease, cancer, and death than those who did not. If the associations are causal, an estimated 1000 participants changing their mode of commuting to include cycling for 10 years would result in 26 additional admissions to hospital for a first injury (of which three would require a hospital stay of a week or longer), 15 fewer first cancer diagnoses, four fewer cardiovascular disease events, and three fewer deaths. Conclusion: Compared with non-active commuting to work, commuting by cycling was associated with a higher risk of hospital admission for a first injury and higher risk of transport related incidents specifically. These risks should be viewed in context of the health benefits of active commuting and underscore the need for a safer infrastructure for cycling in the UK

    Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants

    Get PDF
    Objective: To investigate the association of grip strength with disease specific incidence and mortality and whether grip strength enhances the prediction ability of an established office based risk score. Design: Prospective population based study. Setting: UK Biobank. Participants: 502 293 participants (54% women) aged 40-69 years. Main outcome measures: All cause mortality as well as incidence of and mortality from cardiovascular disease, respiratory disease, chronic obstructive pulmonary disease, and cancer (all cancer, colorectal, lung, breast, and prostate). Results: Of the participants included in analyses, 13 322 (2.7%) died over a mean of 7.1 (range 5.3-9.9) years’ follow-up. In women and men, respectively, hazard ratios per 5 kg lower grip strength were higher (all at P<0.05) for all cause mortality (1.20, 95% confidence interval 1.17 to 1.23, and 1.16, 1.15 to 1.17) and cause specific mortality from cardiovascular disease (1.19, 1.13 to 1.25, and 1.22, 1.18 to 1.26), all respiratory disease (1.31, 1.22 to 1.40, and 1.24, 1.20 to 1.28), chronic obstructive pulmonary disease (1.24, 1.05 to 1.47, and 1.19, 1.09 to 1.30), all cancer (1.17, 1.13 to 1.21, 1.10, 1.07 to 1.13), colorectal cancer (1.17, 1.04 to 1.32, and 1.18, 1.09 to 1.27), lung cancer (1.17, 1.07 to 1.27, and 1.08, 1.03 to 1.13), and breast cancer (1.24, 1.10 to 1.39) but not prostate cancer (1.05, 0.96 to 1.15). Several of these relations had higher hazard ratios in the younger age group. Muscle weakness (defined as grip strength <26 kg for men and <16 kg for women) was associated with a higher hazard for all health outcomes, except colon cancer in women and prostate cancer and lung cancer in both men and women. The addition of handgrip strength improved the prediction ability, based on C index change, of an office based risk score (age, sex, diabetes diagnosed, body mass index, systolic blood pressure, and smoking) for all cause (0.013) and cardiovascular mortality (0.012) and incidence of cardiovascular disease (0.009). Conclusion: Higher grip strength was associated with a range of health outcomes and improved prediction of an office based risk score. Further work on the use of grip strength in risk scores or risk screening is needed to establish its potential clinical utility

    Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease: data from UK Biobank

    Get PDF
    Background: Total cholesterol and high-density lipoprotein cholesterol (HDL-C) measurements are central to cardiovascular disease (CVD) risk assessment, but there is continuing debate around the utility of other lipids for risk prediction. Methods: Participants from UK Biobank without baseline CVD and not taking statins, with relevant lipid measurements (n=346 686), were included in the primary analysis. An incident fatal or nonfatal CVD event occurred in 6216 participants (1656 fatal) over a median of 8.9 years. Associations of nonfasting lipid measurements (total cholesterol, HDL-C, non–HDL-C, direct and calculated low-density lipoprotein cholesterol [LDL-C], and apolipoproteins [Apo] A1 and B) with CVD were compared using Cox models adjusting for classical risk factors, and predictive utility was determined by the C-index and net reclassification index. Prediction was also tested in 68 649 participants taking a statin with or without baseline CVD (3515 CVD events). Results: ApoB, LDL-C, and non–HDL-C were highly correlated (r>0.90), while HDL-C was strongly correlated with ApoA1 (r=0.92). After adjustment for classical risk factors, 1 SD increase in ApoB, direct LDL-C, and non–HDL-C had similar associations with composite fatal/nonfatal CVD events (hazard ratio, 1.23, 1.20, 1.21, respectively). Associations for 1 SD increase in HDL-C and ApoA1 were also similar (hazard ratios, 0.81 [both]). Adding either total cholesterol and HDL-C, or ApoB and ApoA, to a CVD risk prediction model (C-index, 0.7378) yielded similar improvement in discrimination (C-index change, 0.0084; 95% CI, 0.0065, 0.0104, and 0.0089; 95% CI, 0.0069, 0.0109, respectively). Once total and HDL-C were in the model, no further substantive improvement was achieved with the addition of ApoB (C-index change, 0.0004; 95% CI, 0.0000, 0.0008) or any measure of LDL-C. Results for predictive utility were similar for a fatal CVD outcome, and in a discordance analysis. In participants taking a statin, classical risk factors (C-index, 0.7118) were improved by non–HDL-C (C-index change, 0.0030; 95% CI, 0.0012, 0.0048) or ApoB (C-index change, 0.0030; 95% CI, 0.0011, 0.0048). However, adding ApoB or LDL-C to a model already containing non–HDL-C did not further improve discrimination. Conclusions: Measurement of total cholesterol and HDL-C in the nonfasted state is sufficient to capture the lipid-associated risk in CVD prediction, with no meaningful improvement from addition of apolipoproteins, direct or calculated LDL-C

    Walking pace is associated with lower risk of all-cause and cause-specific mortality

    Get PDF
    Purpose: Walking pace is associated with all-cause and cardiovascular disease (CVD) mortality. Whether this association extends to other health outcomes and whether it is independent of total amount of time walked are currently unknown. Therefore, the aim of this study was to investigate whether usual walking pace is associated with a range of health outcomes. Methods: 318,185 UK Biobank participants (54% women) aged 40-69 years were included. Walking pace and total walking time were self-reported. The outcomes comprised: all-cause mortality as well as incidence and mortality from cardiovascular disease (CVD), respiratory disease and cancer. The associations were investigated using Cox proportional hazard models. Results: Over a mean of 5.0 years [ranging from 3.3 to 7.8], 5,890 participants died, 18,568 developed CVD, 5,430 respiratory disease and 19,234 cancer. In a fully adjusted model, compared to slow pace walkers, men and women, respectively, with a brisk pace having lower risk of mortality from all-causes (HR0.79 [95% CI: 0.69; 0.90] and 0.73 [95% CI: 0.62; 0.85]), CVD (HR 0.62 [0.50; 0.76] and 0.80 [0.73; 0.88]), respiratory disease (HR 0.58 [95% CI 0.43; 0.78] and 0.66 [0.57; 0.77]), COPD (HR 0.26 [95% 0.12; 0.56] and 0.28 [0.16; 0.49]). No associations were found for all-cause cancer, colorectal, breast cancer. However, brisk walking was associated with a higher risk of prostate cancer. Conclusions: Walking pace is associated with lower risk of a wide range of important health conditions, independently of overall time spent walking

    Multiple Transits during a Single Conjunction: Identifying Transiting Circumbinary Planetary Candidates from TESS

    Get PDF
    We present results of a study on identifying circumbinary planet candidates that produce multiple transits during one conjunction with eclipsing binary systems. The occurrence of these transits enables us to estimate the candidates' orbital periods, which is crucial as the periods of the currently known transiting circumbinary planets are significantly longer than the typical observational baseline of the Transiting Exoplanet Survey Satellite (TESS). Combined with the derived radii, it also provides valuable information needed for follow-up observations and subsequent confirmation of a large number of circumbinary planet candidates from TESS. Motivated by the discovery of the 1108 day circumbinary planet Kepler-1647, we show the application of this technique to four of Kepler's circumbinary planets that produce such transits. Our results indicate that in systems where the circumbinary planet is on a low-eccentricity orbit, the estimated planetary orbital period is within <10%–20% of the true value. This estimate is derived from photometric observations spanning less than 5% of the planet's period, demonstrating the strong capability of the technique. Capitalizing on the current and future eclipsing binaries monitored by NASA's TESS mission, we estimate that hundreds of circumbinary planet candidates producing multiple transits during one conjunction will be detected in the TESS data. Such a large sample will enable statistical understanding of the population of planets orbiting binary stars and shed new light on their formation and evolution

    Kepler constraints on planets near hot Jupiters

    Get PDF
    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history
    • …
    corecore