3 research outputs found

    Menaquinone 4 increases plasma lipid levels in hypercholesterolemic mice

    No full text
    Abstract In calcific aortic valve disease (CAVD) progressive valvular calcification causes aortic valve dysfunction. CAVD has several risk factors such as age and dyslipidemia. Vitamin K was shown to inhibit vascular calcification in mice and valvular calcification in patients with CAVD. We studied the effect of menaquinone 4 (MK4/vitamin K2) on valvular calcification in the hypercholesterolemic mouse model of CAVD. LDLr−/− ApoB100/100 male mice were fed with a Western diet for 5 months, with (n = 10) or without (n = 10) added 0.2 mg/g MK4. Body weight gain was followed weekly. Morphology of aortic valves and liver was assessed with immunohistochemistry. Plasma cholesterol levels and cytokines from hepatic tissue were assessed in the end of the study. Hepatic gene expression of lipid metabolism regulating genes were assessed after 18 h diet. MK4 exacerbated the lipoprotein lipid profile without affecting aortic valve morphology in hypercholesterolemic LDLr−/− ApoB100/100 mice. The MK4-containing WD diet increased plasma levels of LDL and triglycerides, hepatic steatosis, and mRNA expression of genes required for triglyceride and cholesterol synthesis. MK4 diminished levels of several cytokines and chemokines in liver, including IL-6, TNFα and MCP1, as measured by hepatic cytokine array. Consequently, MK4 may exert non-beneficial effects on circulating lipid levels, especially in hypercholesterolemic individuals

    Increased mesenchymal podoplanin expression is associated with calcification in aortic valves

    No full text
    Abstract Background and aim of the study: Calcific aortic valve disease (CAVD) is a progressive disease starting from mild valvular sclerosis and progressing to severe aortic stenosis (AS) with calcified valves. The origin of the calcification is proposed to be mesenchymal cells which have differentiated towards an osteoblastic phenotype. Podoplanin is a glycoprotein expressed in the endothelium of lymphatic vessels and in osteoblasts and osteocytes, mesenchymal cells, as well as in many carcinomas and aortic atherosclerotic lesions. In CAVD, its expression has been evaluated only as a marker of the lymphatic vasculature. Materials and methods: We determined podoplanin expression in human aortic valves in four patient groups: control (C, n=7), aortic regurgitation (AR, n=8), aortic regurgitation and fibrosis (AR + f, n=15) and AS (n=49) by immunohistochemistry and quantitative real-time PCR (RT-PCR). Results: Immunohistochemically, podoplanin expression was significantly increased in AR + f and AS groups when compared with the control and AR groups and the level of expression positively correlated with the extent of calcification and vascularity. Podoplanin mRNA levels were 1.7-fold higher in the AS group as compared with the control group (P=.05). Podoplanin-positivity was present not only in lymphatic vessel endothelium but also in osteoblasts, osteocytes, chondrocytes, macrophages and extracellular matrix. The majority of the podoplanin-positivity was in spindle cells with a myofibroblastic phenotype, often associated with calcifications. Tricuspid valves had more calcification-associated podoplanin than bi/unicuspid valves (median 1.52 vs 1.16, P<.001). Conclusions: CAVD is characterized by an increased expression of podoplanin; this is associated with the differentiation of valvular interstitial cells into calcium-producing, myofibroblast-like cells. In addition, tricuspid valves express relatively more podoplanin than bi/unicuspid valves
    corecore