7 research outputs found

    Forest plots of subgroup analysis focused on the relationship between serum vitamin D levels and disease activity scores in RA patients.

    No full text
    <p>Summary of Fisher’s z scores with corresponding 95% confidence intervals for the relationship between serum vitam D levels and DAS28 scores: A) stratified according to latitude; B) stratified according to economic status.</p

    Forest plots of disease activity and serum vitamin D levels in RA patients.

    No full text
    <p>Summary of Fisher’s z tests with corresponding 95% confidence intervals for the relationship between: A) serum vitamin D levels and DAS28 scores; B) serum vitamin D levels and serum CRP levels; C) serum vitamin D levels and erythrocyte sedimentation rate.</p

    Flow diagram of the study selection process.

    No full text
    <p>Flow diagram of the study selection process.</p

    Forest plot of serum vitamin D values in RA patients and healthy controls using continuous variance methods.

    No full text
    <p>Forest plot of serum vitamin D values in RA patients and healthy controls using continuous variance methods.</p

    Additional file 1: of MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction

    No full text
    Is Figure S1 showing influence of miR-133 on apoptosis, viability, and proliferation at different times on MSCs. (A) Time-dependent change of early and late apoptosis under hypoxic conditions. (B) Cell viability of MSCs transfected with miR-133 agomir and antagomir for 6, 12, and 48 h. (C) Cell proliferation of MSCs transfected with miR-133 agomir and antagomir for 6, 12, and 48 h (TIF 3763 kb

    Image_1_Apremilast Ameliorates Experimental Arthritis via Suppression of Th1 and Th17 Cells and Enhancement of CD4+Foxp3+ Regulatory T Cells Differentiation.tif

    No full text
    <p>Apremilast is a novel phosphodiesterase 4 (PDE4) inhibitor suppressing immune and inflammatory responses. We assessed the anti-inflammatory effects of Apremilast in type II collagen (CII)-induced arthritis (CIA) mouse model. To determine whether Apremilast can ameliorate arthritis onset in this model, Apremilast was given orally at day 14 after CII immunization. Bone erosion was measured by histological and micro-computed tomographic analysis. Anti-mouse CII antibody levels were measured by enzyme-linked immunosorbent assay, and Th17, Th1 cells, and CD4<sup>+</sup>Foxp3<sup>+</sup> regulatory T (Treg) cells were assessed by flow cytometry in the lymph nodes. Human cartilage and rheumatoid arthritis (RA) synovial fibroblasts (RASFs) implantation in the severe combined immunodeficiency mouse model of RA were used to study the role of Apremilast in the suppression of RASF-mediated cartilage destruction in vivo. Compared with untreated and vehicle control groups, we found that Apremilast therapy delayed arthritis onset and reduced arthritis scores in the CIA model. Total serum IgG, IgG1, IgG2a, and IgG2b were all decreased in the Apremilast treatment groups. Moreover, Apremilast markedly prevented the development of bone erosions in CIA mice by CT analysis. Furthermore, in the Apremilast treated group, the frequency of Th17 cells and Th1 cells was significantly decreased while Treg cells’ frequency was significantly increased. The high dose of Apremilast (25 mg/kg) was superior to low dose (5 mg/kg) in treating CIA. Apremilast treatment reduced the migratory ability of RASFs and their destructive effect on cartilage. Compared with the model group, Apremilast treatment significantly reduced the RASFs invasion cartilage scores in both primary implant and contralateral implant models. Our data suggest that Apremilast is effective in treating autoimmune arthritis and preventing the bone erosion in the CIA model, implicating its therapeutic potential in patients with RA.</p
    corecore