899 research outputs found

    Photochemistry in the arctic free troposphere: NOx budget and the role of odd nitrogen reservoir recycling

    Get PDF
    The budget of nitrogen oxides (NOx) in the arctic free troposphere is calculated with a constrained photochemical box model using aircraft observations from the Tropospheric O3 Production about the Spring Equinox (TOPSE) campaign between February and May. Peroxyacetic nitric anhydride (PAN) was observed to be the dominant odd nitrogen species (NOy) in the arctic free troposphere and showed a pronounced seasonal increase in mixing ratio. When constrained to observed acetaldehyde (CH3CHO) mixing ratios, the box model calculates unrealistically large net NOx losses due to PAN formation (62pptv/day for May, 1-3km). Thus, given our current understanding of atmospheric chemistry, these results cast doubt on the robustness of the CH3CHO observations during TOPSE. When CH3CHO was calculated to steady state in the box model, the net NOx loss to PAN was of comparable magnitude to the net NOx loss to HNO3 (NO2 reaction with OH) for spring conditions. During the winter, net NOx loss due to N2O5 hydrolysis dominates other NOx loss processes and is near saturation with respect to further increases in aerosol surface area concentration. NOx loss due to N2O5 hydrolysis is sensitive to latitude and month due to changes in diurnal photolysis (sharp day-night transitions in winter to continuous sun in spring for the arctic). Near NOx sources, HNO4 is a net sink for NOx; however, for more aged air masses HNO4 is a net source for NOx, largely countering the NOx loss to PAN, N2O5 and HNO3. Overall, HNO4 chemistry impacts the timing of NOx decay and O3 production; however, the cumulative impact on O3 and NOx mixing ratios after a 20-day trajectory is minimal. © 2003 Elsevier Science Ltd. All rights reserved

    Precision high voltage divider for the KATRIN experiment

    Full text link
    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to determine the absolute mass of the electron antineutrino from a precise measurement of the tritium beta-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2 eV. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type for which it is crucial to monitor high voltages of up to 35 kV with a precision and long-term stability at the ppm level. Since devices capable of this precision are not commercially available, a new high voltage divider for direct voltages of up to 35 kV has been designed, following the new concept of the standard divider for direct voltages of up to 100 kV developed at the Physikalisch-Technische Bundesanstalt (PTB). The electrical and mechanical design of the divider, the screening procedure for the selection of the precision resistors, and the results of the investigation and calibration at PTB are reported here. During the latter, uncertainties at the low ppm level have been deduced for the new divider, thus qualifying it for the precision measurements of the KATRIN experiment.Comment: 22 pages, 12 figure

    Photochemistry in the arctic free troposphere: Ozone budget and its dependence on nitrogen oxides and the production rate of free radicals

    Get PDF
    Abstract. Local ozone production and loss rates for the arctic free troposphere (58–85 ◦ N, 1–6 km, February–May) during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 km layer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratios up to ∼300 pptv in February and for NOx mixing ratio
    • …
    corecore