7 research outputs found

    Time-Dependent Fluid-Structure Interaction

    Full text link
    The problem of determining the manner in which an incoming acoustic wave is scattered by an elastic body immersed in a fluid is one of central importance in detecting and identifying submerged objects. The problem is generally referred to as a fluid-structure interaction and is mathematically formulated as a time-dependent transmission problem. In this paper, we consider a typical fluid-structure interaction problem by using a coupling procedure which reduces the problem to a nonlocal initial-boundary problem in the elastic body with a system of integral equations on the interface between the domains occupied by the elastic body and the fluid. We analyze this nonlocal problem by the Lubich approach via the Laplace transform, an essential feature of which is that it works directly on data in the time domain rather than in the transformed domain. Our results may serve as a mathematical foundation for treating time-dependent fluid-structure interaction problems by convolution quadrature coupling of FEM and BEM

    Quantum control of energy flow in light harvesting

    No full text
    Coherent light sources have been widely used in control schemes that exploit quantum interference effects to direct the outcome of photochemical processes. The adaptive shaping of laser pulses is a particularly powerful tool in this context: experimental output as feedback in an iterative learning loop refines the applied laser field to render it best suited to constraints set by the experimenter1,2. This approach has been experimentally implemented to control a variety of processes3-9, but the extent to which coherent excitation can also be used to direct the dynamics of complex molecular systems in a condensed-phase environment remains unclear. Here we report feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium. We show that phases imprinted by the light field mediate the branching ratio of energy transfer between intra- and intermolecular channels in the complex's donor-acceptor system. This result illustrates that molecular complexity need not prevent coherent control, which can thus be extended to probe and affect biological functions

    Primary Immune Deficiency Treatment Consortium (PIDTC) report

    No full text
    The Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases. Current protocols address the natural history of patients treated for severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, and chronic granulomatous disease through retrospective, prospective, and cross-sectional studies. The PIDTC additionally seeks to encourage training of junior investigators, establish partnerships with European and other International colleagues, work with patient advocacy groups to promote community awareness, and conduct pilot demonstration projects. Future goals include the conduct of prospective treatment studies to determine optimal therapies for primary immunodeficiency diseases. To date, the PIDTC has funded 2 pilot projects: newborn screening for SCID in Navajo Native Americans and B-cell reconstitution in patients with SCID after hematopoietic stem cell transplantation. Ten junior investigators have received grant awards. The PIDTC Annual Scientific Workshop has brought together consortium members, outside speakers, patient advocacy groups, and young investigators and trainees to report progress of the protocols and discuss common interests and goals, including new scientific developments and future directions of clinical research. Here we report the progress of the PIDTC to date, highlights of the first 2 PIDTC workshops, and consideration of future consortium objectives
    corecore