15 research outputs found

    Characterization of the Artemisinin Binding Site for Translationally Controlled Tumor Protein (TCTP) by Bioorthogonal Click Chemistry

    No full text
    Despite the fact that multiple artemisinin-alkylated proteins in Plasmodium falciparum have been identified in recent studies, the alkylation mechanism and accurate binding site of artemisinin–protein interaction have remained elusive. Here, we report the chemical-probe-based enrichment of the artemisinin-binding peptide and characterization of the artemisinin-binding site of P. falciparum translationally controlled tumor protein (TCTP). A peptide fragment within the N-terminal region of TCTP was enriched and found to be alkylated by an artemisinin-derived probe. MS2 fragments showed that artemisinin could alkylate multiple amino acids from Phe12 to Tyr22 of TCTP, which was supported by labeling experiments upon site-directed mutagenesis and computational modeling studies. Taken together, the “capture-and-release” strategy affords consolidated advantages previously unavailable in artemisinin–protein binding site studies, and our results deepened the understanding of the mechanism of protein alkylation via heme-activated artemisinin

    The micro-CT images of screws-bone interface taken at 12 weeks after operation.

    No full text
    <p>(a) Coronal micro-CT image of bioactive screw-bone interface. (b) Coronal micro-CT image of metallic screw-bone interface. (c) Sagittal micro-CT image of the bioactive screw-bone interface. (d) Sagittal micro-CT image of the metallic screw-bone interface.</p

    Table_1_Immunological role and prognostic value of the SKA family in pan-cancer analysis.docx

    No full text
    BackgroundThe spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated.MethodsUsing data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes.ResultsOur results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group.ConclusionThe SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.</p

    Toluidine blue (TB) staining of the screw-bone interface at different time points after operation (Ă—200).

    No full text
    <p>(a) The bioactive screw-bone interface at 4 weeks after implantation. (b) The metallic screw-bone interface at 4 weeks after implantation. (c) The bioactive screw-bone interface at 8 weeks after implantation. (d) The metallic screw-bone interface at 8 weeks after implantation. (e) The bioactive screw-bone interface at 24 weeks after implantation. (f) The metallic screw-bone interface at 24 weeks after implantation.</p

    SEM micrographs of the MC3T3-E1 cells cultured on the n-HA/PA/GF scaffold.

    No full text
    <p>(a) Long, spindle-shaped cells attached to the walls of the scaffold after 3 days (SEMĂ—1000). (b) A confluent layer of cells proliferated on the scaffold after 7 days (SEMĂ—1000).</p

    CCK-8 assay for proliferation of MC3T3-E cells cultured with extracts of n-HA/PA66/GF, PA66 (negative control group) and phenol solution (positive controls group) for 1, 3, 5 7 and 14 days.

    No full text
    <p>CCK-8 assay for proliferation of MC3T3-E cells cultured with extracts of n-HA/PA66/GF, PA66 (negative control group) and phenol solution (positive controls group) for 1, 3, 5 7 and 14 days.</p

    Image_2_Immunological role and prognostic value of the SKA family in pan-cancer analysis.tif

    No full text
    BackgroundThe spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated.MethodsUsing data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes.ResultsOur results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group.ConclusionThe SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.</p

    Table_2_Immunological role and prognostic value of the SKA family in pan-cancer analysis.xlsx

    No full text
    BackgroundThe spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated.MethodsUsing data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes.ResultsOur results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group.ConclusionThe SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.</p

    The morphology and distribution of cells cultured for 4 days on each scaffold.

    No full text
    <p>(a) PA66 scaffold (Ă—200) (b) n-HA/PA66/GF scaffold (Ă—200) (c) n-HA/PA66/GF scaffolds (Ă—500) (d) higher magnification of cells corresponding to the rectangle region in (c). (Ă—1000).</p

    Image_1_Immunological role and prognostic value of the SKA family in pan-cancer analysis.tif

    No full text
    BackgroundThe spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated.MethodsUsing data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes.ResultsOur results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group.ConclusionThe SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.</p
    corecore