12 research outputs found

    Electron Acceptor-Dependent Respiratory and Physiological Stratifications in Biofilms

    No full text
    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms

    Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms

    No full text
    Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of <i>Plodia interpunctella</i>), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm’s gut, <i>Enterobacter asburiae</i> YT1 and <i>Bacillus sp.</i> YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films’ hydrophobicity decreased. Obvious damage, including pits and cavities (0.3–0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10<sup>8</sup> cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment

    Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process

    No full text
    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH<sub>3</sub>–N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB <i>Nitrosomonas</i> genus remained at similar level in the biomass while typical NOB <i>Nitrospira</i> genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days

    U(VI) Bioreduction with Emulsified Vegetable Oil as the Electron Donor – Model Application to a Field Test

    No full text
    We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., <i>Environ. Sci. Technol.</i> <b>2013</b>, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U­(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U­(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U­(VI) reduction and immobilization

    Unveiling Fragmentation of Plastic Particles during Biodegradation of Polystyrene and Polyethylene Foams in Mealworms: Highly Sensitive Detection and Digestive Modeling Prediction

    No full text
    It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 μm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation

    Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests

    No full text
    Polystyrene (PS) is generally considered to be durable and resistant to biodegradation. Mealworms (the larvae of Tenebrio molitor Linnaeus) from different sources chew and eat Styrofoam, a common PS product. The Styrofoam was efficiently degraded in the larval gut within a retention time of less than 24 h. Fed with Styrofoam as the sole diet, the larvae lived as well as those fed with a normal diet (bran) over a period of 1 month. The analysis of fecula egested from Styrofoam-feeding larvae, using gel permeation chromatography (GPC), solid-state <sup>13</sup>C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy, and thermogravimetric Fourier transform infrared (TG–FTIR) spectroscopy, substantiated that cleavage/depolymerization of long-chain PS molecules and the formation of depolymerized metabolites occurred in the larval gut. Within a 16 day test period, 47.7% of the ingested Styrofoam carbon was converted into CO<sub>2</sub> and the residue (ca. 49.2%) was egested as fecula with a limited fraction incorporated into biomass (ca. 0.5%). Tests with α <sup>13</sup>C- or β <sup>13</sup>C-labeled PS confirmed that the <sup>13</sup>C-labeled PS was mineralized to <sup>13</sup>CO<sub>2</sub> and incorporated into lipids. The discovery of the rapid biodegradation of PS in the larval gut reveals a new fate for plastic waste in the environment

    Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms

    No full text
    The role of gut bacteria of mealworms (the larvae of Tenebrio molitor Linnaeus) in polystyrene (PS) degradation was investigated. Gentamicin was the most effective inhibitor of gut bacteria among six antibiotics tested. Gut bacterial activities were essentially suppressed by feeding gentamicin food (30 mg/g) for 10 days. Gentamicin-feeding mealworms lost the ability to depolymerize PS and mineralize PS into CO<sub>2</sub>, as determined by characterizing worm fecula and feeding with <sup>13</sup>C-labeled PS. A PS-degrading bacterial strain was isolated from the guts of the mealworms, Exiguobacterium sp. strain YT2, which could form biofilm on PS film over a 28 day incubation period and made obvious pits and cavities (0.2–0.3 mm in width) on PS film surfaces associated with decreases in hydrophobicity and the formation of C–O polar groups. A suspension culture of strain YT2 (10<sup>8</sup> cells/mL) was able to degrade 7.4 ± 0.4% of the PS pieces (2500 mg/L) over a 60 day incubation period. The molecular weight of the residual PS pieces was lower, and the release of water-soluble daughter products was detected. The results indicated the essential role of gut bacteria in PS biodegradation and mineralization, confirmed the presence of PS-degrading gut bacteria, and demonstrated the biodegradation of PS by mealworms

    U(VI) Bioreduction with Emulsified Vegetable Oil as the Electron Donor – Microcosm Tests and Model Development

    No full text
    We conducted microcosm tests and biogeochemical modeling to study U­(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe­(III), U­(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100–120 days in the EVO microcosms versus 10–20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe­(III), U­(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U­(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U­(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface

    Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of <i>Tenebrio molitor</i>) and Effects on the Gut Microbiome

    No full text
    Recent studies have demonstrated the ability for polystyrene (PS) degradation within the gut of mealworms (<i>Tenebrio molitor</i>). To determine whether plastics may be broadly susceptible to biodegradation within mealworms, we evaluated the fate of polyethylene (PE) and mixtures (PE + PS). We find that PE biodegrades at comparable rates to PS. Mass balances indicate conversion of up 49.0 ± 1.4% of the ingested PE into a putative gas fraction (CO<sub>2</sub>). The molecular weights (<i>M</i><sub>n</sub>) of egested polymer residues decreased by 40.1 ± 8.5% in PE-fed mealworms and by 12.8 ± 3.1% in PS-fed mealworms. NMR and FTIR analyses revealed chemical modifications consistent with degradation and partial oxidation of the polymer. Mixtures likewise degraded. Our results are consistent with a nonspecific degradation mechanism. Analysis of the gut microbiome by next-generation sequencing revealed two OTUs (<i>Citrobacter</i> sp. and <i>Kosakonia</i> sp.) strongly associated with both PE and PS as well as OTUs unique to each plastic. Our results suggest that adaptability of the mealworm gut microbiome enables degradation of chemically dissimilar plastics

    Methanogenesis Facilitated by Geobiochemical Iron Cycle in a Novel Syntrophic Methanogenic Microbial Community

    No full text
    Production and emission of methane have been increasing concerns due to its significant effect on global climate change and the carbon cycle. Here we report facilitated methane production from acetate by a novel community of methanogens and acetate oxidizing bacteria in the presence of poorly crystalline akaganeite slurry. Comparative analyses showed that methanogenesis was significantly enhanced by added akaganeite and acetate was mostly stoichiometrically converted to methane. Electrons produced from anaerobic acetate oxidation are transferred to akaganeite nanorods that likely prompt the transformation into goethite nanofibers through a series of biogeochemical processes of soluble Fe­(II) readsorption and Fe­(III) reprecipitation. The methanogenic archaea likely harness the biotransformation of akaganeite to goethite by the Fe­(III)–Fe­(II) cycle to facilitate production of methane. These results provide new insights into biogeochemistry of iron minerals and methanogenesis in the environment, as well as the development of sustainable methods for microbial methane production
    corecore