64 research outputs found

    Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

    Full text link
    Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new dataset called MSMT17 with many important features, e.g., 1) the raw videos are taken by an 15-camera network deployed in both indoor and outdoor scenes, 2) the videos cover a long period of time and present complex lighting variations, and 3) it contains currently the largest number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe that, domain gap commonly exists between datasets, which essentially causes severe performance drop when training and testing on different datasets. This results in that available training data cannot be effectively leveraged for new testing domains. To relieve the expensive costs of annotating new training samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to bridge the domain gap. Comprehensive experiments show that the domain gap could be substantially narrowed-down by the PTGAN.Comment: 10 pages, 9 figures; accepted in CVPR 201

    Degeneration-Tuning: Using Scrambled Grid shield Unwanted Concepts from Stable Diffusion

    Full text link
    Owing to the unrestricted nature of the content in the training data, large text-to-image diffusion models, such as Stable Diffusion (SD), are capable of generating images with potentially copyrighted or dangerous content based on corresponding textual concepts information. This includes specific intellectual property (IP), human faces, and various artistic styles. However, Negative Prompt, a widely used method for content removal, frequently fails to conceal this content due to inherent limitations in its inference logic. In this work, we propose a novel strategy named \textbf{Degeneration-Tuning (DT)} to shield contents of unwanted concepts from SD weights. By utilizing Scrambled Grid to reconstruct the correlation between undesired concepts and their corresponding image domain, we guide SD to generate meaningless content when such textual concepts are provided as input. As this adaptation occurs at the level of the model's weights, the SD, after DT, can be grafted onto other conditional diffusion frameworks like ControlNet to shield unwanted concepts. In addition to qualitatively showcasing the effectiveness of our DT method in protecting various types of concepts, a quantitative comparison of the SD before and after DT indicates that the DT method does not significantly impact the generative quality of other contents. The FID and IS scores of the model on COCO-30K exhibit only minor changes after DT, shifting from 12.61 and 39.20 to 13.04 and 38.25, respectively, which clearly outperforms the previous methods

    Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio

    Full text link
    Automatic designing computationally efficient neural networks has received much attention in recent years. Existing approaches either utilize network pruning or leverage the network architecture search methods. This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs, so that under each network configuration, one can estimate the FLOPs utilization ratio (FUR) for each layer and use it to determine whether to increase or decrease the number of channels on the layer. Note that FUR, like the gradient of a non-linear function, is accurate only in a small neighborhood of the current network. Hence, we design an iterative mechanism so that the initial network undergoes a number of steps, each of which has a small `adjusting rate' to control the changes to the network. The computational overhead of the entire search process is reasonable, i.e., comparable to that of re-training the final model from scratch. Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach, which consistently outperforms the pruning counterpart. The code is available at https://github.com/danczs/NetworkAdjustment

    Fitting the Search Space of Weight-sharing NAS with Graph Convolutional Networks

    Full text link
    Neural architecture search has attracted wide attentions in both academia and industry. To accelerate it, researchers proposed weight-sharing methods which first train a super-network to reuse computation among different operators, from which exponentially many sub-networks can be sampled and efficiently evaluated. These methods enjoy great advantages in terms of computational costs, but the sampled sub-networks are not guaranteed to be estimated precisely unless an individual training process is taken. This paper owes such inaccuracy to the inevitable mismatch between assembled network layers, so that there is a random error term added to each estimation. We alleviate this issue by training a graph convolutional network to fit the performance of sampled sub-networks so that the impact of random errors becomes minimal. With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates, which consequently leads to better performance of the final architecture. In addition, our approach also enjoys the flexibility of being used under different hardware constraints, since the graph convolutional network has provided an efficient lookup table of the performance of architectures in the entire search space.Comment: Accepted to AAAI 202

    Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models

    Full text link
    Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.Comment: Accepted by ICCV 202
    • …
    corecore