3,219 research outputs found

    Excitonic Instabilities and Insulating States in Bilayer Graphene

    Full text link
    The competing ground states of bilayer graphene are studied by applying renormalization group techniques to a bilayer honeycomb lattice with nearest neighbor hopping. In the absence of interactions, the Fermi surface of this model at half-filling consists of two nodal points with momenta K\mathbf{K}, K\mathbf{K}', where the conduction band and valence band touch each other, yielding a semi-metal. Since near these two points the energy dispersion is quadratic with perfect particle-hole symmetry, excitonic instabilities are inevitable if inter-band interactions are present. Using a perturbative renormalization group analysis up to the one-loop level, we find different competing ordered ground states, including ferromagnetism, superconductivity, spin and charge density wave states with ordering vector Q=KK\mathbf{Q}=\mathbf{K}-\mathbf{K}', and excitonic insulator states. In addition, two states with valley symmetry breaking are found in the excitonic insulating and ferromagnetic phases. This analysis strongly suggests that the ground state of bilayer graphene should be gapped, and with the exception of superconductivity, all other possible ground states are insulating.Comment: 17 pages, 6 figures, 2 Tables, Added reference

    Nanocalorimetric Evidence for Nematic Superconductivity in the Doped Topological Insulator Sr0.1_{0.1}Bi2_{2}Se3_{3}

    Full text link
    Spontaneous rotational-symmetry breaking in the superconducting state of doped Bi2Se3\mathrm{Bi}_2\mathrm{Se}_3 has attracted significant attention as an indicator for topological superconductivity. In this paper, high-resolution calorimetry of the single-crystal Sr0.1Bi2Se3\mathrm{Sr}_{0.1}\mathrm{Bi}_2\mathrm{Se}_3 provides unequivocal evidence of a two-fold rotational symmetry in the superconducting gap by a \emph{bulk thermodynamic} probe, a fingerprint of nematic superconductivity. The extremely small specific heat anomaly resolved with our high-sensitivity technique is consistent with the material's low carrier concentration proving bulk superconductivity. The large basal-plane anisotropy of Hc2H_{c2} is attributed to a nematic phase of a two-component topological gap structure η=(η1,η2)\vec{\eta} = (\eta_{1}, \eta_{2}) and caused by a symmetry-breaking energy term δ(η12η22)Tc\delta (|\eta_{1}|^{2} - |\eta_{2}|^{2}) T_{c}. A quantitative analysis of our data excludes more conventional sources of this two-fold anisotropy and provides the first estimate for the symmetry-breaking strength δ0.1\delta \approx 0.1, a value that points to an onset transition of the second order parameter component below 2K

    One-dimensional collision carts computer model and its design ideas for productive experiential learning

    Full text link
    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In the field of designing computer simulations, we discuss briefly three pedagogical considerations such as 1) consistent simulation world view with pen paper representation, 2) data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and 3) game for simple concept testing that can further support learning. We also suggest using physical world setup to be augmented complimentary with simulation while highlighting three advantages of real collision carts equipment like tacit 3D experience, random errors in measurement and conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes. 2015 Resources added: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3), 301 (2012); ISSN 0031-912

    EUS assessment for intermediate risk of choledocholithiasis after a negative magnetic resonance cholangiopancreatography

    Get PDF
    © 2020 SPRING MEDIA PUBLISHING CO. LTD | PUBLISHED BY WOLTERS KLUWER - MEDKNOW 291. Background and Aims: Guidelines recommend either EUS or magnetic resonance cholangiopancreatography (MRCP) for intermediate risk of choledocholithiasis. There is a lack of evidence that supports proceeding with EUS if the MRCP is negative and if clinical suspicion still exists. Methods: This is a retrospective study of all patients who underwent EUS to assess for choledocholithiasis at a tertiary care referral center from July 2013 to October 2019. Results: A total of 593 patients underwent EUS for evaluation for choledocholithiasis. Of the 593 patients, 35.2% (209/593) had an MRCP. 73.2% (153/209) had a negative MRCP while 26.8% (56/209) had a positive MRCP. Of the group of patients who underwent EUS with a negative MRCP, 15% (23/153) were positive for choledocholithiasis on EUS. Of these, 91% (21/23) were also positive for sludge or stones on endoscopic retrograde cholangiopancreatography and thus 14% (21/153) of the EUS were \u27true positives.\u27 There were no clinical or laboratory factors predictive of choledocholithiasis on univariate analysis in the EUS plus negative MRCP group. When further analyzing the MRCP negative group into MRCP-/EUS+ and MRCP-/EUS-subgroups, a total bilirubin \u3e3 mg/dL predicted a bile duct stone (55% vs. 32%, P = 0.05). Conclusion: The diagnostic yield of EUS for suspected choledocholithiasis in the setting of a negative MRCP is 14% in our cohort. EUS should be considered in patients with intermediate risk of choledocholithiasis with a negative MRCP if the clinical suspicion is still present, and especially if the total bilirubin is above 3 mg/dL

    Faculty versus Student Repeatability on Evaluating Translucency of the Anterior Dentition

    Get PDF
    The objective was to compare the repeatability between dental faculty, whose clinical practice was primarily restorative dentistry, and final year dental students in categorizing the inherent translucency of images selected at random using either a 3- or 7-point scale (translucent to opaque). Digital images of anterior dentition were randomly selected based on inherent translucency. Thirty images (five were repeated) were randomized and categorized by 20 dental students and 20 faculty on their inherent translucency. Statistical analysis was performed using an F test for analysis of variance at 95% confidence interval. A covariance parameter estimate (CPE) was accomplished to compare the inter-rater variability of the dental faculty and dental students. Statistically, more variability occurred between Slides (CPE of 0.185 (p = 0.001)) and between Subject and Slide (CPE of 0.122 (p = 0.0002)) than within subjects (CPE of 0.021 (p = 0.083)). Viewing repeat Slides, Students (CPE = 0.16) were more consistent (p \u3c 0.05) than faculty (CPE = 1.8) using the 3- point scale, while the CPE was the same (CPE = 0.669) using 7-point scale. Dental students and faculty were consistent using the 7-point scale to judge repeat slides, while dental students in this limited pilot study were more consistent when viewing a repeat slide using the 3-point scale

    Reexamination of a multisetting Bell inequality for qudits

    Full text link
    The class of d-setting, d-outcome Bell inequalities proposed by Ji and collaborators [Phys. Rev. A 78, 052103] are reexamined. For every positive integer d > 2, we show that the corresponding non-trivial Bell inequality for probabilities provides the maximum classical winning probability of the Clauser-Horne-Shimony-Holt-like game with d inputs and d outputs. We also demonstrate that the general classical upper bounds given by Ji et al. are underestimated, which invalidates many of the corresponding correlation inequalities presented thereof. We remedy this problem, partially, by providing the actual classical upper bound for d less than or equal to 13 (including non-prime values of d). We further determine that for prime value d in this range, most of these probability and correlation inequalities are tight, i.e., facet-inducing for the respective classical correlation polytope. Stronger lower and upper bounds on the quantum violation of these inequalities are obtained. In particular, we prove that once the probability inequalities are given, their correlation counterparts given by Ji and co-workers are no longer relevant in terms of detecting the entanglement of a quantum state.Comment: v3: Published version (minor rewordings, typos corrected, upper bounds in Table III improved/corrected); v2: 7 pages, 1 figure, 4 tables (substantially revised with new results on the tightness of the correlation inequalities included); v1: 7.5 pages, 1 figure, 4 tables (Comments are welcome

    Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters

    Full text link
    We present metallicity estimates for seven open clusters based on spectrophotometric indices from moderate-resolution spectroscopy. Observations of field giants of known metallicity provide a correlation between the spectroscopic indices and the metallicity of open cluster giants. We use \chi^2 analysis to fit the relation of spectrophotometric indices to metallicity in field giants. The resulting function allows an estimate of the target-cluster giants' metallicities with an error in the method of \pm0.08 dex. We derive the following metallicities for the seven open clusters: NGC 1245, [m/H]=-0.14\pm0.04; NGC 2099, [m/H]=+0.05\pm0.05; NGC 2324, [m/H]=-0.06\pm0.04; NGC 2539, [m/H]=-0.04\pm0.03; NGC 2682 (M67), [m/H]=-0.05\pm0.02; NGC 6705, [m/H]=+0.14\pm0.08; NGC 6819, [m/H]=-0.07\pm0.12. These metallicity estimates will be useful in planning future extra-solar planet transit searches since planets may form more readily in metal-rich environments.Comment: 38 pages, including 12 figures. Accepted for publication in A

    Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti_{1-x}Ta_xO_2 (x~0.05) thin films

    Full text link
    We report room-temperature ferromagnetism in highly conducting transparent anatase Ti1-xTaxO2 (x~0.05) thin films grown by pulsed laser deposition on LaAlO3 substrates. Rutherford backscattering spectrometry (RBS), x-ray diffraction (XRD), proton induced x-ray emission (PIXE), x-ray absorption spectroscopy (XAS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) indicated negligible magnetic contaminants in the films. The presence of ferromagnetism with concomitant large carrier densities was determined by a combination of superconducting quantum interference device (SQUID) magnetometry, electrical transport measurements, soft x-ray magnetic circular dichroism (SXMCD), XAS, and optical magnetic circular dichroism (OMCD) and was supported by first-principle calculations. SXMCD and XAS measurements revealed a 90% contribution to ferromagnetism from the Ti ions and a 10% contribution from the O ions. RBS/channelling measurements show complete Ta substitution in the Ti sites though carrier activation was only 50% at 5% Ta concentration implying compensation by cationic defects. The role of Ti vacancy and Ti3+ was studied via XAS and x-ray photoemission spectroscopy (XPS) respectively. It was found that in films with strong ferromagnetism, the Ti vacancy signal was strong while Ti3+ signal was absent. We propose (in the absence of any obvious exchange mechanisms) that the localised magnetic moments, Ti vacancy sites, are ferromagnetically ordered by itinerant carriers. Cationic-defect-induced magnetism is an alternative route to ferromagnetism in wide-band-gap semiconducting oxides without any magnetic elements.Comment: 21 pages, 10 figures, to appear in Philosophical Transaction - Royal Soc.

    Electronic, vibrational and transport properties of pnictogen substituted ternary skutterudites

    Full text link
    First principles calculations are used to investigate electronic band structure and vibrational spectra of pnictogen substituted ternary skutterudites. We compare the results with the prototypical binary composition CoSb3_3 to identify the effects of substitutions on the Sb site, and evaluate the potential of ternary skutterudites for thermoelectric applications. Electronic transport coefficients are computed within the Boltzmann transport formalism assuming a constant relaxation time, using a new methodology based on maximally localized Wannier function interpolation. Our results point to a large sensitivity of the electronic transport coefficients to carrier concentration and to scattering mechanisms associated with the enhanced polarity. The ionic character of the bonds is used to explain the detrimental effect on the thermoelectric properties
    corecore