7 research outputs found

    東南アジアにおける全電子数観測に基づく電離圏研究

    Get PDF
    京都大学0048新制・課程博士博士(情報学)甲第19133号情博第579号新制||情||101(附属図書館)32084京都大学大学院情報学研究科通信情報システム専攻(主査)教授 山本 衛, 教授 津田 敏隆, 教授 佐藤 亨学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDGA

    Temporal change of EIA asymmetry revealed by a beacon receiver network in Southeast Asia

    Get PDF
    To reveal the temporal change of the equatorial ionization anomaly (EIA) asymmetry, a multipoint satellite-ground beacon experiment was conducted along the meridional plane of the Thailand–Indonesia sector. The observation includes one station near the magnetic equator and four stations at off-equator latitudes. This is the first EIA asymmetry study with high spatial resolution using GNU Radio Beacon Receiver (GRBR) observations in Southeast Asia. GRBR-total electron contents (TECs) from 97 polar-orbit satellite passes in March 2012 were analyzed in this study. Successive passes captured rapid evolution of EIA asymmetry, especially during geomagnetic disturbances. The penetrating electric fields that occur during geomagnetic disturbed days are not the cause of the asymmetry. Instead, high background TEC associated with an intense electric field empowers the neutral wind to produce severe asymmetry of the EIA. Such rapid evolution of EIA asymmetry was not seen during nighttime, when meridional wind mainly controlled the asymmetric structures. Additional data are necessary to identify the source of the variations, i.e., atmospheric waves. Precisely capturing the locations of the crests and the evolution of the asymmetry enhances understanding of the temporal change of EIA asymmetry at the local scale and leads to a future local modeling for TEC prediction in Southeast Asia

    Latitudinal GRBR-TEC estimation in Southeast Asia region based on the two-station method

    Get PDF
    Article first published online: 13 OCT 2014Total electron content (TEC) is an important parameter for revealing latitudinal ionospheric structures, such as the equatorial ionization anomaly (EIA) in Southeast Asia. Understanding the EIA is beneficial for studying equatorial spread F. To reveal the structures, the absolute TEC as a function of latitude must be accurately determined. In early 2012, we expanded a GNU Radio Beacon Receiver (GRBR) network to provide latitudinal coverage in the Thailand-Indonesia sector. We employed the GRBR network to receive VHF and UHF signals from polar low-Earth-orbit satellites. The TEC offset is an unknown parameter in the absolute TEC estimation process. We propose a new technique based on the two-station method to estimate the offset for the latitudinal TEC estimation, and it works better than the original method for a sparse network. The TEC estimation system requires two iterations to minimize the root-mean-square error (RMSE). Once the RMSE reaches the global minimum, the absolute TECs are estimated simultaneously over five GRBR stations. GPS-TECs from local stations are used as the initial guess of the offset estimation. The height of the ionospheric pierce point is determined from the ionosonde hmF2. As a result, the latitudinal GRBR-TEC was successfully estimated from the polar orbit satellites. The two EIA humps were clearly captured by the GRBR-TEC. The result was well verified with the TEC reconstructed from the C/NOFS density data and the ionosonde bottomside data. This is a significant step showing that the GRBR is a useful tool for the study of low-latitude ionospheric features
    corecore