14 research outputs found

    Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice.

    Get PDF
    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout (Adipoq-/- ) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector-mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq-/- dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq-/- dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq-/- dams. Hepatic glucose and triglyceride production rates of Adipoq-/- dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq-/- dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq-/- and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq-/- dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq-/- dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy

    The platelet-derived growth factor receptor alpha promoter-directed expression of cre recombinase in mouse placenta.

    Get PDF
    BackgroundNumerous pathologies of pregnancy originate from placental dysfunction. It is essential to understand the functions of key genes in the placenta in order to discern the etiology of placental pathologies. A paucity of animal models that allow conditional and inducible expression of a target gene in the placenta is a major limitation for studying placental development and function.ResultsTo study the platelet-derived growth factor receptor alpha (PDGFRα)-directed and tamoxifen-induced Cre recombinase expression in the placenta, PDGFRα-CreER mice were crossed with mT/mG dual-fluorescent reporter mice. The expression of endogenous membrane-localized enhanced green fluorescent protein (mEGFP) and/or dTomato in the placenta was examined to identify PDGFRα promoter-directed Cre expression. Pregnant PDGFRα-CreER;mT/mG mice were treated with tamoxifen at various gestational ages. Upon tamoxifen treatment, reporter protein mEGFP was observed in the junctional zone (JZ) and chorionic plate (CP). Furthermore, a single dose of tamoxifen was sufficient to induce the recombination.ConclusionsPDGFRα-CreER expression is restricted to the JZ and CP of mouse placentas. PDGFRα-CreER mice provide a useful tool to conditionally knock out or overexpress a target gene in these regions of the mouse placenta

    High-fat feeding reprograms maternal energy metabolism and induces long-term postpartum obesity in mice.

    Get PDF
    BackgroundExcessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity.MethodsC57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery.ResultsWe found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation.ConclusionsThese results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT

    Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-Like Protein 4 Expression in Mice

    No full text
    To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF (ppHF) feeding, which avoided the dietary effect during pregnancy. We found not only that maternal blood TG concentrations in ppHF dams were remarkably lower than in control dams but also that the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in interscapular brown adipose tissue (iBAT) of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4 -/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gonadal white adipose tissue, and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice

    Prolonged Prepregnant Maternal High-Fat Feeding Reduces Fetal and Neonatal Blood Glucose Concentrations by Enhancing Fetal β-Cell Development in C57BL/6 Mice.

    No full text
    The main objective of this study was to investigate the effect of maternal obesity on offspring's glucose metabolism during the perinatal period. Maternal obesity was established by feeding C57BL/6 mice with a high-fat (HF) diet before or during pregnancy. Our results showed that prolonged prepregnant HF feeding but not HF feeding during pregnancy significantly reduced fetal and neonatal blood glucose concentrations. Remarkably, elevated blood insulin concentrations and increased activation of insulin signaling were observed in fetuses and neonates from prepregnant HF-fed dams. In addition, significantly larger β-cell areas were observed in pancreases of fetuses and neonates from prepregnant HF-fed dams. Although there was no significant change in placental cross-sectional area or GLUT 1 expression, prepregnant HF feeding significantly enhanced the expression of genes that control placental fatty acid supply. Interestingly, reducing fatty acid supply to the placenta and fetus by placental-specific knockout of adipose triglyceride lipase not only reduced fetal β-cell area and blood insulin concentration but also attenuated prepregnant HF feeding-induced reduction in offspring blood glucose concentrations during the perinatal period. Together, these results indicate that placental and fetal fatty acid supply plays an important role in fetal β-cell development, insulin secretion, and glucose metabolism. Prolonged prepregnant maternal HF feeding resembles pregravid maternal obesity in mice, which reduces fetal and neonatal blood glucose concentrations by enhancing fetal β-cell development and insulin secretion

    Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-Like Protein 4 Expression in Mice

    Full text link
    To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF (ppHF) feeding, which avoided the dietary effect during pregnancy. We found not only that maternal blood TG concentrations in ppHF dams were remarkably lower than in control dams but also that the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in interscapular brown adipose tissue (iBAT) of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4−/− dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gonadal white adipose tissue, and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice.</jats:p
    corecore