87 research outputs found

    Stable Coexistence of an Invasive Plant and Biocontrol Agent: A Parameterized Coupled Plant-Herbivore Model

    Get PDF
    1. Coupled plant-herbivore models, allowing feedback from plant to herbivore populations and vice versa, enable us to predict the impact of biocontrol agents on their target weed populations; however, they are rarely used in biocontrol studies. We describe the population biology of the invasive plant Echium plantagineum and the weevil Mogulones larvatus, a biocontrol agent, in Australia. In order to understand the dynamics of this plant-herbivore system, a series of coupled models of increasing complexity was developed. 2. A simple model was extended to include a seed bank, density-dependent plant fecundity, competition between weevil larvae and plant tolerance of herbivory, where below a threshold plants could compensate for larval feeding. Parameters and functional forms were estimated from experimental and field data. 3. The plant model, in the absence of the weevil, exhibited stable dynamics and provided a good quantitative description of field densities before the weevil was introduced. 4. In the coupled plant-herbivore model, density dependence in both plant fecundity and weevil larval competition stabilized the dynamics. Without larval competition the model was unstable, and plant tolerance of herbivory exacerbated this instability. This was a result of a time delay in plant response to herbivore densities. 5. Synthesis and applications. The coupled plant-herbivore model allowed us to predict whether stable coexistence of target plant and biocontrol agents was achievable at an acceptable level. We found this to be the case for the Echium-Mogulones system and believe that similar models would be of use when assessing new agents in this and other invasive plant biocontrol systems. Density dependence in new biocontrol agents should be assessed in order to determine whether it is likely to result in the aims of classical biocontrol: low, stable and sustainable populations of plant and herbivore. Further work should be done to characterize the strength of density dependence according to the niche occupied by the biocontrol agent, for example the strength and functional form of density dependence in stem borers may be quite different to that of defoliators

    Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa

    Get PDF
    Distinct breeding populations of migratory species may overlap both spatially and temporally, but differ in patterns of habitat use. This has important implications for population monitoring and conservation. To quantify the extent to which two distinct breeding populations of a migratory shorebird, the Black-tailed Godwit Limosa limosa, overlap spatially, temporally and in their use of different habitats during winter. We use mid-winter counts between 1990 and 2001 to identify the most important sites in Iberia for Black-tailed Godwits. Monthly surveys of estuarine mudflats and rice-fields at one major site, the Tejo estuary in Portugal in 2005-2007, together with detailed tracking of colour-ringed individuals, are used to explore patterns of habitat use and segregation of the Icelandic subspecies L. l. islandica and the nominate continental subspecies L. l. limosa. In the period 1990-2001, over 66 000 Black-tailed Godwits were counted on average in Iberia during mid-winter (January), of which 80% occurred at just four sites: Tejo and Sado lower basins in Portugal, and Coto Dontildeana and Ebro Delta in Spain. Icelandic Black-tailed Godwits are present throughout the winter and forage primarily in estuarine habitats. Continental Black-tailed Godwits are present from December to March and primarily use rice-fields. Iberia supports about 30% of the Icelandic population in winter and most of the continental population during spring passage. While the Icelandic population is currently increasing, the continental population is declining rapidly. Although the estuarine habitats used by Icelandic godwits are largely protected as Natura 2000 sites, the habitat segregation means that conservation actions for the decreasing numbers of continental godwits should focus on protection of rice-fields and re-establishment of freshwater wetlands

    Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.

    Get PDF
    Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata. 2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric. 3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide. 4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large. 5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities

    Climate change and dispersal.

    No full text

    Habitats, morphological diversity, and distribution of the genus Vigna Savi in Australia

    No full text
    Vigna is an agriculturally important genus containing several important species used as pulses, forages, vegetable, or cover crops. The genus is represented in Australia by 5 species, 4 indigenous (V. radiata, V. vexillata, V. luteola, V. marina) and 1 endemic (V. lanceolata). A germplasm collection has been assembled comprising >400 accessions of the 5 Vigna species from Australia and offshore and seed committed to storage as the CSIRO National Vigna collection. For a large number of accessions, herbarium sheets have also been prepared either from field or glasshouse-grown plants and lodged with the Qld Herbarium, Brisbane. This paper describes the structure of the collection and, for each of the 5 species and major regional variants, summarises provenance information on their geographic distribution, habitat, soil type, and associated species. Within the Australian tropics/subtropics, the Vigna species collectively occupy a diverse range of grassland habitats extending from the foreshore to the central desert. Of the 5 species, the endemic V. lanceolata is the most diverse in terms of distribution, habitat, and morphology. Geographic gaps in the collection are noted and priorities for future collection suggested
    • 

    corecore