8,007 research outputs found

    Invariant manifolds and orbit control in the solar sail three-body problem

    Get PDF
    In this paper we consider issues regarding the control and orbit transfer of solar sails in the circular restricted Earth-Sun system. Fixed points for solar sails in this system have the linear dynamical properties of saddles crossed with centers; thus the fixed points are dynamically unstable and control is required. A natural mechanism of control presents itself: variations in the sail's orientation. We describe an optimal controller to control the sail onto fixed points and periodic orbits about fixed points. We find this controller to be very robust, and define sets of initial data using spherical coordinates to get a sense of the domain of controllability; we also perform a series of tests for control onto periodic orbits. We then present some mission strategies involving transfer form the Earth to fixed points and onto periodic orbits, and controlled heteroclinic transfers between fixed points on opposite sides of the Earth. Finally we present some novel methods to finding periodic orbits in circumstances where traditional methods break down, based on considerations of the Center Manifold theorem

    Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments

    Full text link
    We present a new calculation of the cross sections for charged current (CC) and neutral current (NC) νN\nu N and νˉN\bar{\nu} N interactions in the neutrino energy range 104<Eν<101210^{4}<E_{\nu}<10^{12} GeV using the most recent MSTW parton distribution functions (PDFs), MSTW 2008. We also present the associated uncertainties propagated from the PDFs, as well as parametrizations of the cross section central values, their uncertainty bounds, and the inelasticity distributions for ease of use in Monte Carlo simulations. For the latter we only provide parametrizations for energies above 10710^7 GeV. Finally, we assess the feasibility of future neutrino experiments to constrain the νN\nu N cross section in the ultra-high energy (UHE) regime using a technique that is independent of the flux spectrum of incident neutrinos. A significant deviation from the predicted Standard Model cross sections could be an indication of new physics, such as extra space-time dimensions, and we present expected constraints on such models as a function of the number of events observed in a future subterranean neutrino detector.Comment: 20 pages, 13 figures, 5 tables, published in Phys.Rev.D. This version fixes a typo in Equation 16 of the publication. Also since version v1, the following changes are in v2 and also in the published version: tables with cs values, parametrization of the y distribution at low-y improved, the discussions on likelihood and also earth absorption are expanded, added a needed minus sign in Eq. 17 of v

    Challenger STS-17 (41-G) post-flight best estimate trajectory products: Development and summary results

    Get PDF
    Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels

    Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)

    Get PDF
    The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated

    An Inner Gaseous Disk around the Herbig Be Star MWC 147

    Full text link
    We present high-spectral-resolution, optical spectra of the Herbig Be star MWC 147, in which we spectrally resolve several emission lines, including the [O I] lines at 6300 and 6363\deg. Their highly symmetric, double-peaked line profiles indicate that the emission originates in a rotating circumstellar disk. We deconvolve the Doppler-broadened [O I] emission lines to obtain a measure of emission as a function of distance from the central star. The resulting radial surface brightness profiles are in agreement with a disk structure consisting of a flat, inner, gaseous disk and a flared, outer, dust disk. The transition between these components at 2 to 3 AU corresponds to the estimated dust sublimation radius. The width of the double-peaked Mg II line at 4481\deg suggests that the inner disk extends to at least 0.10 AU, close to the corotation radius.Comment: accepted for ApJ Letters (Oct. 2010

    Detecting Extrasolar Planets with Integral Field Spectroscopy

    Get PDF
    Observations of extrasolar planets using Integral Field Spectroscopy (IFS), if coupled with an extreme Adaptive Optics system and analyzed with a Simultaneous Differential Imaging technique (SDI), are a powerful tool to detect and characterize extrasolar planets directly; they enhance the signal of the planet and, at the same time, reduces the impact of stellar light and consequently important noise sources like speckles. In order to verify the efficiency of such a technique, we developed a simulation code able to test the capabilities of this IFS-SDI technique for different kinds of planets and telescopes, modelling the atmospheric and instrumental noise sources. The first results obtained by the simulations show that many significant extrasolar planet detections are indeed possible using the present 8m-class telescopes within a few hours of exposure time. The procedure adopted to simulate IFS observations is presented here in detail, explaining in particular how we obtain estimates of the speckle noise, Adaptive Optics corrections, specific instrumental features, and how we test the efficiency of the SDI technique to increase the signal-to-noise ratio of the planet detection. The most important results achieved by simulations of various objects, from 1 M_J to brown dwarfs of 30 M_J, for observations with an 8 meter telescope, are then presented and discussed.Comment: 60 pages, 37 figures, accepted in PASP, 4 Tables adde

    Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI

    Full text link
    Interferometric observations of two well-known Be stars, gamma Cas and phi Per, were collected and analyzed to determine the spatial characteristics of their circumstellar regions. The observations were obtained using the Navy Prototype Optical Interferometer equipped with custom-made narrowband filters. The filters isolate the H-alpha emission line from the nearby continuum radiation, which results in an increased contrast between the interferometric signature due to the H-alpha-emitting circumstellar region and the central star. Because the narrowband filters do not significantly attenuate the continuum radiation at wavelengths 50 nm or more away from the line, the interferometric signal in the H-alpha channel is calibrated with respect to the continuum channels. The observations used in this study represent the highest spatial resolution measurements of the H-alpha-emitting regions of Be stars obtained to date. These observations allow us to demonstrate for the first time that the intensity distribution in the circumstellar region of a Be star cannot be represented by uniform disk or ring-like structures, whereas a Gaussian intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A

    Summary of the recent short-haul systems studies

    Get PDF
    The results of several NASA sponsored high density short haul air transportation systems studies are reported as well as analyzed. Included are the total STOL systems analysis approach, a companion STOL composites study conducted in conjunction with STOL systems studies, a STOL economic assessment study, an evaluation of STOL aircraft with and without externally blown flaps, an alternative STOL systems for the San Francisco Bay Area, and the quiet, clean experimental engine studies. Assumptions and results of these studies are summarized, their differences, analyzed, and the results compared with those in-house analyses performed by the Systems Studies Division of the NASA-Ames Research Center. Pertinent conclusions are developed and the more significant technology needs for the evaluation of a viable short haul transportation system are identified

    Carbon Deficiency in Externally-Polluted White Dwarfs: Evidence for Accretion of Asteroids

    Full text link
    Existing determinations show that n(C)/n(Fe) is more than a factor of 10 below solar in the atmospheres of three white dwarfs that appear to be externally-polluted. These results are not easily explained if the stars have accreted interstellar matter, and we re-interpret these measurements as evidence that these stars have accreted asteroids of a chrondritic composition.Comment: 23 pages, 6 figures, accepted for Ap
    corecore