35 research outputs found
Calculated performance map of a 4 1/2-stage 15.0 centimeter (5.9 inch) mean diameter turbine designed for a turbofan simulator
The overall performance of an existing high-ratio turbine is calculated analytically over a range of speed and pressure ratio in order to determine its capability for other applications. The analytical performance covers a speed range from 50 to 120 percent of design and a pressure-ratio range from 5.0 to 35.0. The turbine was designed for a 50.8 centimeter (20.0 in.) tip diameter turbofan simulator. Computed results are compared with the experimental turbine data obtained from testing three fan configurations with the turbofan simulator in air. The comparison indicates good agreement over the range of speeds and pressure ratios covered by the experimental data
Static jet noise test results of four 0.35 scale-model QCGAT mixer nozzles
As part of the NASA Quiet Clean General Aviation Turbofan (QCGAT) engine mixer-nozzle exhaust system program, static jet exhaust noise was recorded at microphone angles of 45 to 155 deg relative to the nozzle inlet for a conventional profile coaxial nozzle and three 12-lobed coaxial mixer nozzles. Both flows in all four nozzles are internally mixed before being discharged from a single exhaust nozzle. The conventional profile coaxial nozzle jet noise is compared to the current NASA Lewis coaxial jet noise prediction and after applying an adjustment to the predicted levels based on the ratio of the kinetic energy of the primary and secondary flows, the prediction is within a standard deviation of 0.9 dB of the measured data. The mass average (mixed flow) prediction is also compared to the noise data for the three mixer nozzles with a reasonably good fit after applying another kinetic energy ratio adjustment (standard deviation of 0.7 to 1.5 dB with the measured data). The tests included conditions for the full-scale engine at takeoff (T.O.), cutback (86% T.O.) and approach (67% T.O.)
Experimental performance evaluation of a 4.59- inch radial-inflow turbine over a range of Reynolds number
Effect of Reynolds number on performance of 4.59-inch tip diameter radial inflow turbin
JT150 1/2-scale nozzle jet noise experiment and comparison with prediction
As part of a program to study flight effects on the exhaust noise of a full scale JT15D engine, static half scale model jet noise experiments were conducted. Acoustic data were recorded for microphone angles of 45 deg to 155 deg with jet conditions for the model scale nozzle corresponding closely to those at 55, 73 and 97 percent of corrected rated speed for the full scale engine. These data are useful for determining the relative importance of jet and core noise in the static full scale engine test data and will in turn allow for a proper evaluation of flight effects on the exhaust noise results. The model scale data are also compared with the coaxial jet noise prediction. Above 1000 Hz, the prediction is nominally 0 to 3 dB higher than the data. The arithmetic mean of the differences between the experimental OASPL and the predicted OASPL for all angles for each run ranged from 0 to -3.2 dB. The standard deviation of all the OASPL differences is 2.2 dB. The discrepancies are greatest at low primary jet velocities and appear to be due to inadequacy in the variable jet density exponent incorporated in the prediction procedure
Aerodynamic performance of a 4.59-inch modified radial-inflow turbine for a single-shaft Brayton cycle space power system
Aerodynamic characteristics of a stator modified gas turbine for single shaft Brayton cycle power syste
Cross spectra between pressure and temperature in a constant-area duct downstream of a hydrogen-fueled combustor
Pressure temperature cross spectra are necessary in predicting noise propagation in regions of velocity gradients downstream of combustors if the effect of convective entropy disturbances is included. Pressure temperature cross spectra and coherences were measured at spatially separated points in a combustion rig fueled with hydrogen. Temperature-temperature and pressure-pressure cross spectra and coherences between the spatially separated points as well as temperature and pressure autospectra were measured. These test results were compared with previous results obtained in the same combustion rig using Jet A fuel in order to investigate their dependence on the type of combustion process. The phase relationships are not consistent with a simple source model that assumes that pressure and temperature are in phase at a point in the combustor and at all other points downstream are related to one another by only a time delay due to convection of temperature disturbances. Thus these test results indicate that a more complex model of the source is required
Cross spectra between temperature and pressure in a constant area duct downstream of a combustor
The feasibility of measuring pressure temperature cross spectra and coherence and temperature-temperature cross spectra and coherence at spatially separated points along with pressure and temperature auto-spectra in a combustion rig was investigated. The measurements were made near the inlet and exit of a 6.44 m long duct attached to a J-47 combustor. The fuel used was Jet A. The cross spectra and coherence measurements show the pressure and temperature fluctuations correlate best at low frequencies. At the inlet the phenomena controlling the phase relationship between pressure and temperature could not be identified. However, at the duct exit the phase angle of the pressure is related to the phase angle of the temperature by the convected flow time delay
The NASA Lewis Research Center Internal Fluid Mechanics Facility
An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity