532 research outputs found

    Feedback Enhanced Sensitivity in Optomechanics: Surpassing the Parametric Instability Barrier

    Get PDF
    The intracavity power, and hence sensitivity, of optomechanical sensors is commonly limited by parametric instability. Here we characterize the parametric instability induced sensitivity degradation in a micron scale cavity optomechanical system. Feedback via optomechanical transduction and electrical gradient force actuation is applied to suppress the parametric instability. As a result a 5.4 fold increase in mechanical motion transduction sensitivity is achieved to a final value of 1.9×10−18mHz−1/21.9\times 10^{-18}\rm m Hz^{-1/2}.Comment: 4 pages, 4 figure

    Minimum requirements for feedback enhanced force sensing

    Full text link
    The problem of estimating an unknown force driving a linear oscillator is revisited. When using linear measurement, feedback is often cited as a mechanism to enhance bandwidth or sensitivity. We show that as long as the oscillator dynamics are known, there exists a real-time estimation strategy that reproduces the same measurement record as any arbitrary feedback protocol. Consequently some form of nonlinearity is required to gain any advantage beyond estimation alone. This result holds true in both quantum and classical systems, with non-stationary forces and feedback, and in the general case of non-Gaussian and correlated noise. Recently, feedback enhanced incoherent force sensing has been demonstrated [Nat. Nano. \textbf{7}, 509 (2012)], with the enhancement attributed to a feedback induced modification of the mechanical susceptibility. As a proof-of-principle we experimentally reproduce this result through straightforward filtering.Comment: 5 pages + 2 pages of Supplementary Informatio

    Thin film superfluid optomechanics

    Full text link
    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid 4^4He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates g0>2Ï€Ă—100g_0>2\pi \times 100 kHz and single photon cooperativities C0>10C_0>10 are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as g0>ΩMg_0>\Omega_M and opens the prospect of laser cooling a liquid into its quantum ground state.Comment: 18 pages, 6 figure

    Modelling of vorticity, sound and their interaction in two-dimensional superfluids

    Full text link
    Vorticity in two-dimensional superfluids is subject to intense research efforts due to its role in quantum turbulence, dissipation and the BKT phase transition. Interaction of sound and vortices is of broad importance in Bose-Einstein condensates and superfluid helium [1-4]. However, both the modelling of the vortex flow field and of its interaction with sound are complicated hydrodynamic problems, with analytic solutions only available in special cases. In this work, we develop methods to compute both the vortex and sound flow fields in an arbitrary two-dimensional domain. Further, we analyse the dispersive interaction of vortices with sound modes in a two-dimensional superfluid and develop a model that quantifies this interaction for any vortex distribution on any two-dimensional bounded domain, possibly non-simply connected, exploiting analogies with fluid dynamics of an ideal gas and electrostatics. As an example application we use this technique to propose an experiment that should be able to unambiguously detect single circulation quanta in a helium thin film.Comment: 23 pages, 8 figure

    Estimates of tropical bromoform emissions using an inversion method

    Get PDF
    Abstract. Bromine plays an important role in ozone chemistry in both the troposphere and stratosphere. When measured by mass, bromoform (CHBr3) is thought to be the largest organic source of bromine to the atmosphere. While seaweed and phytoplankton are known to be dominant sources, the size and the geographical distribution of CHBr3 emissions remains uncertain. Particularly little is known about emissions from the Maritime Continent, which have usually been assumed to be large, and which appear to be especially likely to reach the stratosphere. In this study we aim to reduce this uncertainty by combining the first multi-annual set of CHBr3 measurements from this region, and an inversion process, to investigate systematically the distribution and magnitude of CHBr3 emissions. The novelty of our approach lies in the application of the inversion method to CHBr3. We find that local measurements of a short-lived gas like CHBr3 can be used to constrain emissions from only a relatively small, sub-regional domain. We then obtain detailed estimates of CHBr3 emissions within this area, which appear to be relatively insensitive to the assumptions inherent in the inversion process. We extrapolate this information to produce estimated emissions for the entire tropics (defined as 20° S–20° N) of 225 Gg CHBr3 yr−1. The ocean in the area we base our extrapolations upon is typically somewhat shallower, and more biologically productive, than the tropical average. Despite this, our tropical estimate is lower than most other recent studies, and suggests that CHBr3 emissions in the coastline-rich Maritime Continent may not be stronger than emissions in other parts of the tropics. M. Ashfold thanks the Natural Environment Research Council (NERC) for a research studentship, and is grateful for support through the ERC ACCI project (project number 267760). N. Harris is supported by a NERC Advanced Research Fellowship. This work was supported through the EU SHIVA project, through the NERC OP3 project, and NERC grants NE/F020341/1 and NE/J006246/1. We also acknowledge the Department of Energy and Climate Change for their support in the development of InTEM (contract GA0201). For field site support we thank S.-M. Phang, A. A. Samah and M. S. M. Nadzir of Universiti Malaya, S. Ong and H. E. Ung of Global Satria, Maznorizan Mohamad, L. K. Peng and S. E. Yong of the Malaysian Meteorological Department, the Sabah Foundation, the Danum Valley Field Centre and the Royal Society. This paper constitutes publication no. 613 of the Royal Society South East Asia Rainforest Research Programme.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/979/2014/acp-14-979-2014.html

    Engineered entropic forces allow ultrastrong dynamical backaction

    Full text link
    When confined within an optical cavity, light can exert strong radiation pressure forces. Combined with dynamical backaction, this enables important processes such as laser cooling, and applications ranging from precision sensors to quantum memories and interfaces. However, the magnitude of radiation pressure forces is constrained by the energy mismatch between photons and phonons. Here, we overcome this barrier using entropic forces arising from the absorption of light. We show that entropic forces can exceed the radiation pressure force by eight orders of magnitude, and demonstrate this using a superfluid helium third-sound resonator. We develop a framework to engineer the dynamical backaction from entropic forces, applying it to achieve phonon lasing with a threshold three orders of magnitude lower than previous work. Our results present a pathway to exploit entropic forces in quantum devices, and to study nonlinear fluid phenomena such as turbulence and solitons.Comment: Main text is 10 pages, 5 figures. Supplements is 21 pages, 11 figure

    Challenging homophobic bullying in schools: the politics of progress

    Get PDF
    In recent years homophobic bullying has received increased attention from NGOs, academics and government sources and concern about the issue crosses traditional moral and political divisions. This article examines this ‘progressive’ development and identifies the ‘conditions of possibility’ that have enabled the issue to become a harm that can be spoken of. In doing so it questions whether the readiness to speak about the issue represents the opposite to prohibitions on speech (such as the notorious Section 28) or whether it is based on more subtle forms of governance. It argues that homophobic bullying is heard through three key discourses (‘child abuse’, ‘the child victim’ and ‘the tragic gay’) and that, while enabling an acknowledgement of certain harms, they simultaneously silence other needs and experiences. It then moves to explore the aspirational and ‘liberatory’ political investments that underlie these seemingly ‘common-sense’ descriptive discourses and concludes with a critique of the quasi-criminal responses that the dominant political agenda of homophobic bullying gives rise to. The article draws on, and endeavours to develop a conversation between, critical engagements with the contemporary politics of both childhood and sexuality
    • 

    corecore