7,343 research outputs found

    Observations of isoprene, methacrolein (MAC) and methyl vinyl ketone (MVK) at a mountain site in Hong Kong

    Get PDF
    A field campaign was carried out in September-November 2010 near the summit of Mt. Tai Mo Shan in Hong Kong. Isoprene, methyl vinyl ketone (MVK) and methacrolein (MAC) were measured. The average isoprene mixing ratio was 109 pptv, and the average MAC and MVK levels were 68 pptv and 164 pptv, respectively. The average daytime levels of isoprene (14920 pptv, average95% confidence interval, p<0.01), MAC (709 pptv, p<0.01) and MVK (16922 pptv, p<0.1) were significantly higher than the average nighttime values (205 pptv, 498 pptv and 13925 pptv, respectively). The relationship between MVK and MAC indicated that nearby isoprene oxidation dominated their daytime abundances, while NO3 chemistry and regional transport of anthropogenic sources from inland Pearl River Delta region could explain the higher MVK to MAC ratios at night. Correlation analysis of [MVK]/[isoprene] versus [MAC]/[isoprene] found that the isoprene photochemical ages were between 10 and 64min. Regression analysis of total O3 (O3+NO2) versus MVK resulted in an estimated contribution of isoprene oxidation to ozone production of 12.5%, consistent with the simulated contribution of 10-11% by an observation-based model. © 2012 American Geophysical Union. All Rights Reserved

    Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China

    Get PDF
    Identification of major sources of airborne pollutants and their contribution to pollutant loadings are critical in developing effective pollution control and mitigation strategies. In this study, a comprehensive dataset of non-methane volatile organic compounds (NMVOCs) collected from August 2001 to December 2002 at a polluted rural/coastal site in the Pearl River Delta (PRD) is analyzed to assess the relative contributions of major pollution sources to ambient NMVOC mixing ratios. A unique approach based on emission ratios of individual chemical species was used to classify the bulk air samples in order to apportion regional and local source contributions to the measured mixing ratios. The collected air samples fell into four major groups, including air masses from the inner PRD region and Hong Kong (HK) urban area. To estimate the source apportionment of NMVOCs, a principal component analysis/absolute principal component scores receptor model was applied to the classified data points. The results indicate that the regional and local source contributions to ambient NMVOC levels at the site were significantly different due to the differences in local versus regional energy use and industrial activities. For air masses originating from HK, vehicular emissions accounted for approximately 39% of the total NMVOC levels, followed by industrial emissions (35%), gasoline evaporation (14%) and commercial/domestic liquefied petroleum gas/natural gas use (12%). By contrast, for air masses originating from the PRD the industrial emissions accounted for 43% of the total NMVOC burden, followed by vehicular emissions (32%) and biomass burning (25%). In particular, the higher regional contribution of biomass burning found in this study as compared to existing emission inventories suggests that further efforts are necessary to refine the emission inventories of NMVOCs in the PRD region. © 2006 Elsevier Ltd. All rights reserved

    Measurements of trace gases in the inflow of South China Sea background air and outflow of regional pollution at Tai O, Southern China

    Get PDF
    We present a 16-month record of ozone (O3), carbon monoxide (CO), total reactive nitrogen (NOy), sulphur dioxide (SO2), methane (CH4), C2 - C8 non-methane hydrocarbons (NMHCs), C1 - C2 halocarbons, and dimethyl sulfide (DMS) measured at a southern China coastal site. The study aimed to establish/update seasonal profiles of chemically active trace gases and pollution tracers in subtropical Asia and to characterize the composition of the 'background' atmosphere over the South China Sea (SCS) and of pollution outflow from the industrialized Pearl River Delta (PRD) region and southern China. Most of the measured trace gases of anthropogenic origin exhibited a winter maximum and a summer minimum, while O3 showed a maximum in autumn which is in contrast to the seasonal behavior of O3 in rural eastern China and in many mid-latitude remote locations in the western Pacific. The data were segregated into two groups representing the SCS background air and the outflow of regional continental pollution (PRD plus southern China), based on CO mixing ratios and meteorological conditions. NMHCs and halocarbon data were further analyzed to examine the relationships between their variability and atmospheric lifetime and to elucidate the extent of atmospheric processing in the sampled air parcels. The trace gas variability (S) versus lifetime (τ) relationship, defined by the power law, Slnx = Aτ-b, (where X is the trace gas mixing ratio) gives a fit parameter A of 1.39 and exponent b of 0.42 for SCS air, and A of 2.86 and b of 0.31 for the regional continental air masses. An examination of ln[n-butane]/ln[ethane] versus ln[propane]/ln[ethane] indicates that their relative abundance was dominated by mixing as opposed to photochemistry in both SCS and regional outflow air masses. The very low ratios of ethyne/CO, propane/ethane and toluene/benzene suggest that the SCS air mass has undergone intense atmospheric processing since these gases were released into the atmosphere. Compared to the results from other polluted rural sites and from urban areas, the large values of these species in the outflow of PRD/southern China suggest source(s) emitting higher levels of ethyne, benzene, and toluene, relative to light alkanes. These chemical characteristics could be unique indicators of anthropogenic emissions from southern China. © Springer Science + Business Media, Inc. 2005

    Vertical distributions of non-methane hydrocarbons and halocarbons in the lower troposphere over northeast China

    Get PDF
    Vertical distributions of air pollutants are crucial for understanding the key processes of atmospheric transport and for evaluating chemical transport models. In this paper, we present measurements of non-methane hydrocarbons (NMHCs) and halocarbons obtained from an intensive aircraft study over northeast (NE) China in summer 2007. Most compounds exhibited a typical negative profile of decreasing mixing ratios with increasing altitude, although the gradients differed with different species. Three regional plumes with enhanced VOC mixing ratios were discerned and characterized. An aged plume transported from the northern part of the densely populated North China Plain (NCP; i.e. Beijing-Tianjin area) showed relatively higher levels of HCFC-22, 1,2-dichloroethane (1,2-DCE) and toluene. In comparison, the plume originating from Korea had higher abundances of CFC-12, tetrachloroethene (C2Cl4) and methyl chloride (CH3Cl), while regional air masses from NE China contained more abundant light alkanes. By comparing these results with the earlier PEM-West B (1994) and TRACE-P (2001) aircraft measurements, continuing declining trends were derived for methyl chloroform (CH3CCl3), tetrachloromethane (CCl4) and C2Cl4 over the greater China-northwestern Pacific region, indicating the accomplishment of China in reducing these compounds under the Montreal protocol. However, the study also provided evidence for the continuing emissions of several halocarbons in China in 2007, such as CFCs (mainly from materials in stock) and HCFCs. © 2011 Elsevier Ltd

    Acetone in the Atmosphere of Hong Kong, Abundance, Sources and Photochemical Precursors

    Get PDF
    Intensive field measurements were carried out at a mountain site and an urban site at the foot of the mountain from September to November 2010 in Hong Kong. Acetone was monitored using both canister air samples and 2,4-dinitrophenylhydrazine cartridges. The spatiotemporal patterns of acetone showed no difference between the two sites (p > 0.05), and the mean acetone mixing ratios on O3 episode days were higher than those on non-O3 episode days at both sites (p < 0.05). The source contributions to ambient acetone at both sites were estimated using a receptor model i.e. Positive Matrix Factorization (PMF). The PMF results showed that vehicular emission and secondary formation made the most important contribution to ambient acetone, followed by the solvent use at both sites. However, the contribution of biogenic emission at the mountain site was significantly higher than that at the urban site, whereas biomass burning made more remarkable contribution at the urban site than that at the mountain site. The mechanism of oxidation formation of acetone was investigated using a photochemical box model. The results indicated that i-butene was the main precursor of secondary acetone at the mountain site, while the oxidation of i-butane was the major source of secondary acetone at the urban site.Department of Civil and Environmental Engineerin

    Source contributions to ambient VOCs and CO at a rural site in eastern China

    Get PDF
    Ambient data on volatile organic compounds (VOCs) and carbon monoxide (CO) obtained at a rural site in eastern China are analyzed to investigate the nature of emission sources and their relative contributions to ambient concentrations. A principal component analysis (PCA) showed that vehicle emissions and biofuel burning, biomass burning and industrial emissions were the major sources of VOCs and CO at the rural site. The source apportionments were then evaluated using an absolute principal component scores (APCS) technique combined with multiple linear regressions. The results indicated that 71%±5% (average±standard error) of the total VOC emissions were attributed to a combination of vehicle emissions and biofuel burning, and 7%±3% to gasoline evaporation and solvent emissions. Both biomass burning and industrial emissions contributed to 11%±1% and 11%±0.03% of the total VOC emissions, respectively. In addition, vehicle emissions and biomass and biofuel burning accounted for 96%±6% of the total CO emissions at the rural site, of which the biomass burning was responsible for 18%±3%. The results based on PCA/APCS are generally consistent with those from the emission inventory, although a larger relative contribution to CO from biomass burning is indicated from our analysis. © 2004 Elsevier Ltd. All rights reserved

    Exploiting hidden block sparsity: Interdependent matching pursuit for cyclic feature detection

    Get PDF
    In this paper, we propose a novel Compressive Sensing (CS)-enhanced spectrum sensing approach for Cognitive Radio (CR) systems. The new framework enables cyclic feature detection with a significantly reduced sampling rate. We associate the new framework with a novel model-based greedy reconstruction algorithm: interdependent matching pursuit (IMP). For IMP, the hidden block sparsity owing to the symmetry present in the cyclic spectrum is exploited which effectively reduces the degree of freedom of problem. Compared with conventional CS with independent support selection, a remarkable spectrum reconstruction improvement is achieved by IMP.The work of Wei Chen is supported by the State Key Laboratory of Rail Traffic Control and Safety (No. RCS2012ZT014), Beijing Jiaotong University, and the Key grant Project of Chinese Ministry of Education (No.313006).This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/GLOCOM.2013.683122

    Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model

    Get PDF
    A photochemical trajectory model (PTM), coupled with the Master Chemical Mechanism (MCM) describing the degradation of 139 volatile organic compounds (VOCs) in the troposphere, was developed and used for the first time to simulate the formation of photochemical pollutants at Wangqingsha (WQS), Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. The simulated diurnal variations and mixing ratios of ozone were in good agreement with observed data (R2=0.80, P<0.05), indicating that the photochemical trajectory model - an integration of boundary layer trajectories, precursor emissions and chemical processing - provides a reasonable description of ozone formation in the Pearl River Delta (PRD) region. Calculated photochemical ozone creation potential (POCP) indices for the region indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity, as seen in other airsheds in Europe. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 92% of the total POCP-weighted emission. The 60 VOC species include C2-C6 alkenes, C6-C8 aromatics, biogenic VOCs, and so on. The results indicated that regional scale ozone formation in the PRD region can be mainly attributed to a relatively small number of VOC species, namely isoprene, ethene, m-xylene, and toluene, etc. A further investigation of the relative contribution of the main emission source categories to ozone formation suggested that mobile sources were the largest contributor to regional O3 formation (40%), followed by biogenic sources (29%), VOC product-related sources (23%), industry (6%), biomass burning (1%), and power plants (1%). The findings obtained in this study would advance our knowledge of air quality in the PRD region, and provide useful information to local government on effective control of photochemical smog in the region. © 2010 Elsevier Ltd
    corecore