214 research outputs found

    Review of Bats and SARS

    Get PDF
    TOC Summary: The discovery of SARS-like coronaviruses in horseshoe bats highlights the possibility of future outbreaks caused by different coronaviruses of bat origin

    Isolation and characterization of a novel alphanodavirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Nodaviridae </it>is a family of non-enveloped isometric viruses with bipartite positive-sense RNA genomes. The <it>Nodaviridae </it>family consists of two genera: alpha- and beta-nodavirus. Alphanodaviruses usually infect insect cells. Some commercially available insect cell lines have been latently infected by Alphanodaviruses.</p> <p>Results</p> <p>A non-enveloped small virus of approximately 30 nm in diameter was discovered co-existing with a recombinant <it>Helicoverpa armigera </it>single nucleopolyhedrovirus (<it>Hear</it>NPV) in Hz-AM1 cells. Genome sequencing and phylogenetic assays indicate that this novel virus belongs to the genus of alphanodavirus in the family <it>Nodaviridae </it>and was designated HzNV. HzNV possesses a RNA genome that contains two segments. RNA1 is 3038 nt long and encodes a 110 kDa viral protein termed protein A. The 1404 nt long RNA2 encodes a 44 kDa protein, which exhibits a high homology with coat protein precursors of other alphanodaviruses. HzNV virions were located in the cytoplasm, in association with cytoplasmic membrane structures. The host susceptibility test demonstrated that HzNV was able to infect various cell lines ranging from insect cells to mammalian cells. However, only Hz-AM1 appeared to be fully permissive for HzNV, as the mature viral coat protein essential for HzNV particle formation was limited to Hz-AM1 cells.</p> <p>Conclusion</p> <p>A novel alphanodavirus, which is 30 nm in diameter and with a limited host range, was discovered in Hz-AM1 cells.</p

    Differential stepwise evolution of SARS coronavirus functional proteins in different host species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SARS coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and extensive investigations indicated that it originated from an animal source (probably bats) and was recently introduced into the human population via wildlife animals from wet markets in southern China. Previous studies revealed that the spike (S) protein of SARS had experienced adaptive evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not known.</p> <p>Results</p> <p>We employed several methods to investigate selective pressure among different SARS-CoV groups representing different epidemic periods and hosts. Our results suggest that most functional proteins of SARS-CoV have experienced a stepwise adaptive evolutionary pathway. Similar to previous studies, the spike protein underwent strong positive selection in the early and middle phases, and became stabilized in the late phase. In addition, the replicase experienced positive selection only in human patients, whereas assembly proteins experienced positive selection mainly in the middle and late phases. No positive selection was found in any proteins of bat SARS-like-CoV. Furthermore, specific amino acid sites that may be the targets of positive selection in each group are identified.</p> <p>Conclusion</p> <p>This extensive evolutionary analysis revealed the stepwise evolution of different functional proteins of SARS-CoVs at different epidemic stages and different hosts. These results support the hypothesis that SARS-CoV originated from bats and that the spill over into civets and humans were more recent events.</p

    Radio pulsar B0950++08: Radiation in Magnetosphere and Sparks above Surface

    Full text link
    The nearby radio pulsar B0950++08 with full duty cycle is targeted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST, 110 minutes allocated), via adopting polarization calibration on two ways of baseline determination, in order to understand its magnetospheric radiation geometry as well as the polar cap sparking. % The radiation of the main pulse could not be informative of magnetic field line planes due to its low linear polarization (<10%<10 \%) and the position angle jumps, and the polarization position angle in the pulse longitudes whose linear fractions are larger than 30% \sim 30 \% is thus fitted in the classical rotating vector model (RVM). % The best RVM fit indicates that the inclination angle, α\alpha, and the impact angle, β\beta, of this pulsar are 100.5100.5^{\circ} and 33.2-33.2^{\circ}, respectively, suggesting that the radio emission comes from two poles. % Polar cap sparking in the vacuum gap model, either the annular gap or the core gap, is therefore investigated in this RVM geometry, resulting in a high-altitude magnetospheric emission at heights from 0.25RLC\sim 0.25R_{\rm LC} to 0.56RLC\sim 0.56R_{\rm LC}, with RLCR_{\rm LC} the light cylinder radius. % It is evident that both sparking points of the main and inter pulses are located mainly away from the magnetic pole, that is meaningful in the physics of pulsar surface and is even relevant to pulsar's inner structure.Comment: 13 pages, 9 figures, submitte

    Characterization of the duck enteritis virus UL55 protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Characteration of the newly identified duck enteritis virus UL55 gene product has not been reported yet. Knowledge of the protein UL55 can provide useful insights about its function.</p> <p>Results</p> <p>The newly identified duck enteritis virus UL55 gene was about 561 bp, it was amplified and digested for construction of a recombinant plasmid pET32a(+)/UL55 for expression in Escherichia coli. SDS-PAGE analysis revealed the recombinant protein UL55(pUL55) was overexpressed in Escherichia coli BL21 host cells after induction by 0.2 mM IPTG at 37°C for 4 h and aggregated as inclusion bodies. The denatured protein about 40 KDa named pUL55 was purified by washing five times, and used to immune rabbits for preparation of polyclonal antibody. The prepared polyclonal antibody against pUL55 was detected and determined by Agar immundiffusion and Neutralization test. The results of Wstern blotting assay and intracellular analysis revealed that pUL55 was expressed most abundantly during the late phase of replication and mainly distributed in cytoplasm in duck enteritis virus infected cells.</p> <p>Conclusions</p> <p>In this study, the duck enteritis virus UL55 protein was successfully expressed in prokaryotic expression system. Besides, we have prepared the polyclonal antibody against recombinant prtein UL55, and characterized some properties of the duck enteritis virus UL55 protein for the first time. The research will be useful for further functional analysis of this gene.</p

    An Integrated Model for Simulating Regional Water Resources Based on Total Evapotranspiration Control Approach

    Get PDF
    Total evapotranspiration and water consumption (ET) control is considered an efficient method for water management. In this study, we developed a water allocation and simulation (WAS) model, which can simulate the water cycle and output different ET values for natural and artificial water use, such as crop evapotranspiration, grass evapotranspiration, forest evapotranspiration, living water consumption, and industry water consumption. In the calibration and validation periods, a &quot;piece-by-piece&quot; approach was used to evaluate the model from runoff to ET data, including the remote sensing ET data and regional measured ET data, which differ from the data from the traditional hydrology method. We applied the model to Tianjin City, China. The Nash-Sutcliffe efficiency (Ens) of the runoff simulation was 0.82, and its regression coefficient 2 was 0.92. The Nash-Sutcliffe Efficiency (Ens) of regional total ET simulation was 0.93, and its regression coefficient 2 was 0.98. These results demonstrate that ET of irrigation lands is the dominant part, which accounts for 53% of the total ET. The latter is also a priority in ET control for water management

    Type III IFN Receptor Expression and Functional Characterisation in the Pteropid Bat, Pteropus alecto

    Get PDF
    Bats are rich reservoir hosts for a variety of viruses, many of which are capable of spillover to other susceptible mammals with lethal consequences. The ability of bats to remain asymptomatic to viral infection may be due to the rapid control of viral replication very early in the immune response through innate antiviral mechanisms. Type I and III interferons (IFNs) represent the first line of defence against viral infection in mammals, with both families of IFNs present in pteropid bats. To obtain further insight into the type III IFN system in bats, we describe the characterization of the type III IFN receptor (IFNλR) in the black flying fox, P. alecto with the characterization of IFNλR1 and IL10R2 genes that make up the type III IFN receptor complex. The bat IFNλR complex has a wide tissue distribution and at the cellular level, both epithelial and immune cells are responsive to IFN-λ treatment. Furthermore, we demonstrate that the bat IFNλR1 chain acts as a functional receptor. To our knowledge, this report represents the first description of an IFN receptor in any species of bat. The responsiveness of bat cells to IFN-λ support a role for the type III IFN system by epithelial and immune cells in bats

    Cloning, expression and characterization of gE protein of Duck plague virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gE protein of duck plague virus is the important membrane glycoprotein, its protein characterization has not been reported. In this study, we expressed and presented the characterization of the DPV gE product.</p> <p>Results</p> <p>According to the sequence of the gE gene, a pair of primers were designed, and the DNA product with 1490bp in size was amplified by using the polymerase chain reaction (PCR). The PCR product was cloned into pMD18-T vector, and subcloned into pET32a(+), generating the recombinant plasmid pET32a/DPV-gE. SDS-PAGE analysis showed that the fusion pET32a/DPV-gE protein was highly expressed after induction by 0.2 mM IPTG at 30°C for 4.5 h in Rosseta host cells. Over expressed 6×His-gE fusion protein was purified by nickel affinity chromatography, and used to immunize the rabbits for the preparation of polyclonal antibody. The result of the intracellular localization revealed that the gE protein was appeared to be in the cytoplasm region. The real time PCR, RT-PCR analysis and Western blotting revealed that the gE gene was produced most abundantly during the late phase of replication in DPV-infected cells.</p> <p>Conclusions</p> <p>In this work, the DPV gE protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gE product for the first time. These properties of the gE protein provided a prerequisite for further functional analysis of this gene.</p

    Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duck viral enteritis, which is caused by duck enteritis virus (DEV), causes significant economic losses in domestic and wild waterfowls because of the high mortality and low egg production rates. With the purpose of eliminating this disease and decreasing economic loss in the commercial duck industry, researching on glycoprotein K (gK) of DEV may be a new kind of method for preventing and curing this disease. Because glycoproteins project from the virus envelope as spikes and are directly involved in the host immune system and elicitation of the host immune responses, and also play an important role in mediating infection of target cells, the entry into cell for free virus and the maturation or egress of virus. The gK is one of the major envelope glycoproteins of DEV. However, little information correlated with gK is known, such as antigenic and functional characterization.</p> <p>Results</p> <p>Bioinformatic predictions revealed that the expression of the full-length gK gene (<it>fgK</it>) in a prokaryotic system is difficult because of the presence of suboptimal exon and transmembrane domains at the C-terminal. In this study, we found that the <it>fgK </it>gene might not be expressed in a prokaryotic system in accordance with the bioinformatic predictions. Further, we successfully used bioinformatics tools to guide the prokaryotic expression of the <it>gK </it>gene by designing a novel truncated <it>gK </it>gene (<it>tgK</it>). These findings indicated that bioinformatics provides theoretical data for target gene expression and saves time for our research. The recombinant tgK protein (tgK) was expressed and purified by immobilized metal affinity chromatography (IMAC). Western blotting and indirect enzyme-linked immunosorbent assay (ELISA) showed that the tgK possessed antigenic characteristics similar to native DEV-gK.</p> <p>Conclusions</p> <p>In this work, the DEV-<it>tgK </it>was expressed successfully in prokaryotic system for the first time, which will provide usefull information for prokaryotic expression of alphaherpesvirus gK homologs, and the recombinant truncated gK possessed antigenic characteristics similar to native DEV gK. Because of the good reactionogenicity, specificity and sensitivity, the purified tgK could be useful for developing a sensitive serum diagnostic kit to monitor DEV outbreaks.</p
    corecore