21 research outputs found

    Neural Bases of Phonological and Semantic Processing in Early Childhood

    Get PDF
    During the early period of reading development, children gain phonological (letter-to-sound mapping) and semantic knowledge (storage and retrieval of word meaning). Their reading ability changes rapidly, accompanied by learning-induced brain plasticity as they learn to read. This study aims at identifying the neural bases of phonological and semantic processing in early childhood by using a combination of univariate and multivariate pattern analysis. Nineteen typically developing children between the age of five and seven performed visual word-level phonological (rhyming) and semantic (related meaning) judgment tasks during functional magnetic resonance imaging scans. Our multivariate analysis showed that young children with good reading ability have already recruited the left hemispheric regions in the brain for phonological processing, including the inferior frontal gyrus (IFG), superior and middle temporal gyrus, and fusiform gyrus. In addition, our multivariate results suggested that different sub-regions of the left IFG were recruited for the two tasks. Our results suggested the left lateralization of frontotemporal regions for phonological processing and semantic processing. In addition, we observed bilateral activations of parietal regions for semantic processing during early childhood. Our findings indicate that the neural bases of reading have already begun to be shaped in early childhood for typically developing children, which can be used as a control baseline for comparison of children at risk for reading difficulties

    Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity

    Get PDF
    The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity

    Association of Six Single Nucleotide Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population

    Get PDF
    To investigate whether the candidate genes that confer susceptibility to type 2 diabetes mellitus are also correlated with gestational diabetes mellitus (GDM) in pregnant Chinese women.In this study, 1764 unrelated pregnant women were recruited, of which 725 women had GDM and 1039 served as controls. Six single nucleotide polymorphisms (rs7754840 in CDKAL1, rs391300 in SRR, rs2383208 in CDKN2A/2B, rs4402960 in IGF2BP2, rs10830963 in MTNR1B, rs4607517 in GCK) were genotyped using TaqMan allelic discrimination assays. The genotype and allele distributions of each SNP between the GDM cases and controls and the combined effects of alleles for the risk of developing GDM were analyzed. We found that the rs4402960, rs2383208 and rs391300 were statistically associated with GDM (OR = 1.207, 95%CI = 1.029-1.417, p = 0.021; OR = 1.242, 95%CI = 1.077-1.432, p = 0.003; OR = 1.202, 95%CI = 1.020-1.416, P = 0.028, respectively). In addition, the effect was greater under a recessive model in rs391300 (OR = 1.820, 95%CI = 1.226-2.701, p = 0.003). Meanwhile, the joint effect of these three loci indicated an additive effect of multiple alleles on the risk of developing GDM with an OR of 1.196 per allele (p = 1.08×10(-4)). We also found that the risk alleles of rs2383208 (b = -0.085, p = 0.003), rs4402960 (b = -0.057, p = 0.046) and rs10830963 (b = -0.096, p = 0.001) were associated with HOMA-B, while rs7754840 was associated with decrease in insulin AUC during a 100 g OGTT given at the time of GDM diagnosis (b = -0.080, p = 0.007).Several risk alleles of type 2 diabetes were associated with GDM in pregnant Chinese women. The effects of these SNPs on GDM might be through the impairment of beta cell function and these risk loci contributed additively to the disease

    A Benchmark Course Portfolio for SLPA 453: Neurological Foundations of Speech and Language

    Get PDF
    This benchmark course portfolio reflects the iterative design process for SLPA 453: Neurological Foundations of Speech and Language. This course covers the foundational knowledge of neuroanatomy and neurophysiology of the central and peripheral nervous system and the neurology of the human communication processes, and the classification of impairments based on the lesion sites in the human brain. I analyzed student learning through various activities that align with two main course goals: (1) demonstrate knowledge of the neurology of human communication processes; (2) demonstrate the ability to integrate information pertaining to normal and abnormal human development across the life span. Based on the data collected, the two main course goals are achieved. I plan to change the courses in Fall 2022 based on students’ feedbacks from surveys after mid-term and final exams to optimize student learning

    Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity

    Get PDF
    The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity
    corecore