2,004 research outputs found
The intimate affliction of vicarious racialization: Afro-Chinese couples in South China
Racial prejudice and discrimination towards Africans in Guangzhou have been widely documented and are systemic. Nonetheless, conjugal unions and family formation between Chinese citizens and members of the African diaspora have become more prevalent in recent years. Together, Afro-Chinese couples confront quotidian threats of violence, arrest, and deportation of the African partners, which threats affect their families and livelihoods. Studies thus far have neglected the complex dynamics and negotiations of racism that manifest in the interracial domestic sphere. Through reflexive observational fieldwork and qualitative interviews, this study provides a contemporary analysis of negotiating racism in intimate family life, especially from the unique standpoint of the Chinese spouse in an Afro-Chinese marriage. Drawing upon empirical data and the Althusserian notion of interpellation, we develop the concept of the intimate affliction of vicarious racialization to analyze how multiple inequities intersect and condition the couplesâ overlapping lived experiences. Vicarious racialization particularly emphasizes processes by which Chinese women become interpellated but also resist anti-Black racism. This intimate affliction destabilizes the prevailing discourse on racism, which focuses on targeted (racialized) minorities, and the dichotomy of direct/indirect discrimination against them. This study highlights the often-overlooked role of womenâs agency across multiple borderlands with their partners as they negotiate gendered, racialized, and classed subjections in familial and social spaces
QGP flow fluctuations and the characteristics of higher moments
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is
studied in a 3+1D fluid dynamical model with a globally symmetric, initial
condition. We minimize fluctuations arising from complex dynamical processes at
finite impact parameters and from fluctuating random initial conditions to have
a conservative fluid dynamical background estimate for the statistical
distributions of the thermodynamical parameters. We also avoid a phase
transition in the equation of state, and we let the matter supercool during the
expansion.
Then central Pb+Pb collisions at TeV are studied in an
almost perfect fluid dynamical model, with azimuthally symmetric initial state
generated in a dynamical flux-tube model. The general development of
thermodynamical extensives are also shown for lower energies.
We observe considerable deviations from a thermal equilibrium source as a
consequence of the fluid dynamical expansion arising from a least fluctuating
initial state
Peak Values of Conductivity in Integer and Fractional Quantum Hall Effect
The diagonal conductivity was measured in the Corbino geometry
in both integer and fractional quantum Hall effect (QHE). We find that peak
values of are approximately equal for transitions in a wide range
of integer filling factors , as expected in scaling theories of QHE.
This fact allows us to compare peak values in the integer and fractional
regimes within the framework of the law of corresponding states.Comment: 8 pages (revtex format), 3 postscript figure
Gene transcription analysis during interaction between potato and Ralstonia solanacearum
Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanisms of potato-Rs interactions are poorly understood. In this study, we combined suppression subtractive hybridization and macroarray hybridization to identify genes that are differentially expressed during the incompatible interaction between Rs and potato. In total, 302 differentially expressed genes were identified and classified into 12 groups according to their putative biological functions. Of 302 genes, 81 were considered as Rs resistance-related genes based on the homology to genes of known function, and they have putative roles in pathogen recognition, signal transduction, transcription factor functioning, hypersensitive response, systemic acquired resistance, and cell rescue and protection. Additionally, 50 out of 302 genes had no match or low similarity in the NCBI databases, and they may represent novel genes. Of seven interesting genes analyzed via RNA gel blot and semi-quantitative RT-PCR, six were induced, one was suppressed, and all had different transcription patterns. The results demonstrate that the response of potato against Rs is rapid and involves the induction of numerous various genes. The genes identified in this study add to our knowledge of potato resistance to Rs
Le Chatelier-Braun principle in cosmological physics
Assuming that dark energy may be treated as a fluid with a well defined
temperature, close to equilibrium, we argue that if nowadays there is a
transfer of energy between dark energy and dark matter, it must be such that
the latter gains energy from the former and not the other way around.Comment: 6 pages, revtex file, no figures; version accepted for publication in
General Relativity and Gravitatio
Overcoming laser diode nonlinearity issues in multi-channel radio-over-fiber systems
The authors demonstrate how external light injection into a directly modulated laser diode may be used to enhance the performance of a multi-channel radio-over-fiber system operating at a frequency of 6 GHz. Performance improvements of up to 2 dB were achieved by linearisation of the lasers-modulation response. To verify the experimental work a simulation of the complete system was carried out using Matlab. Good correlation was observed between experimental and simulated results
The Hydrodynamics of M-Theory
We consider the low energy limit of a stack of N M-branes at finite
temperature. In this limit, the M-branes are well described, via the AdS/CFT
correspondence, in terms of classical solutions to the eleven dimensional
supergravity equations of motion. We calculate Minkowski space two-point
functions on these M-branes in the long-distance, low-frequency limit, i.e. the
hydrodynamic limit, using the prescription of Son and Starinets
[hep-th/0205051]. From these Green's functions for the R-currents and for
components of the stress-energy tensor, we extract two kinds of diffusion
constant and a viscosity. The N dependence of these physical quantities may
help lead to a better understanding of M-branes.Comment: 1+19 pages, references added, section 5 clarified, eq. (72) correcte
Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution
Image and video quality in Long Range Observation Systems (LOROS) suffer from
atmospheric turbulence that causes small neighbourhoods in image frames to
chaotically move in different directions and substantially hampers visual
analysis of such image and video sequences. The paper presents a real-time
algorithm for perfecting turbulence degraded videos by means of stabilization
and resolution enhancement. The latter is achieved by exploiting the turbulent
motion. The algorithm involves generation of a reference frame and estimation,
for each incoming video frame, of a local image displacement map with respect
to the reference frame; segmentation of the displacement map into two classes:
stationary and moving objects and resolution enhancement of stationary objects,
while preserving real motion. Experiments with synthetic and real-life
sequences have shown that the enhanced videos, generated in real time, exhibit
substantially better resolution and complete stabilization for stationary
objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on
Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma
de Mallorca, Spai
Missing Transverse-Doppler Effect in Time-Dilation Experiments with High-Speed Ions
Recent experiments with high-speed ions have investigated potential
deviations from the time-dilation predicted by special relativity (SR). The
main contribution of this article is to show that the SR predictions are
matched by the experimental results only when the transverse Doppler effect in
the observed emissions from the ions are neglected in the analysis. However,
the Doppler effect in the emission cannot be neglected because it is similar to
the time dilation effect. Thus, the article highlights the need to consider
Doppler emission effects when validating SR time dilation using high-speed ion
experiments.Comment: 3 pages, 3 figure
Quantum correction to the Kubo formula in closed mesoscopic systems
We study the energy dissipation rate in a mesoscopic system described by the
parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of
linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel
transitions leading to energy pumping, and also smears the discrete spectrum of
the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the
mean level spacing and the dissipation rate is given by the Kubo formula. We
calculate the quantum correction to the Kubo result that reveals the original
discreteness of the energy spectrum. The first correction to the system
viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes
in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX
- âŠ