1,170 research outputs found

    Interactive Feature Selection and Visualization for Large Observational Data

    Get PDF
    Data can create enormous values in both scientific and industrial fields, especially for access to new knowledge and inspiration of innovation. As the massive increases in computing power, data storage capacity, as well as capability of data generation and collection, the scientific research communities are confronting with a transformation of exploiting the advanced uses of the large-scale, complex, and high-resolution data sets in situation awareness and decision-making projects. To comprehensively analyze the big data problems requires the analyses aiming at various aspects which involves of effective selections of static and time-varying feature patterns that fulfills the interests of domain users. To fully utilize the benefits of the ever-growing size of data and computing power in real applications, we proposed a general feature analysis pipeline and an integrated system that is general, scalable, and reliable for interactive feature selection and visualization of large observational data for situation awareness. The great challenge tackled in this dissertation was about how to effectively identify and select meaningful features in a complex feature space. Our research efforts mainly included three aspects: 1. Enable domain users to better define their interests of analysis; 2. Accelerate the process of feature selection; 3. Comprehensively present the intermediate and final analysis results in a visualized way. For static feature selection, we developed a series of quantitative metrics that related the user interest with the spatio-temporal characteristics of features. For timevarying feature selection, we proposed the concept of generalized feature set and used a generalized time-varying feature to describe the selection interest. Additionally, we provided a scalable system framework that manages both data processing and interactive visualization, and effectively exploits the computation and analysis resources. The methods and the system design together actualized interactive feature selections from two representative large observational data sets with large spatial and temporal resolutions respectively. The final results supported the endeavors in applications of big data analysis regarding combining the statistical methods with high performance computing techniques to visualize real events interactively

    Active and Reactive Power Control of Flexible Loads for Distribution-Level Grid Services

    Get PDF
    Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could provide reactive power at any state-of-charge (SOC). This dissertation shows four-quadrant operation of EVs and aggregation of EVs for support of grid operations. First, this work develops hierarchical coordination frameworks to optimally manage active and reactive power dispatch of number of spatially distributed EVs incorporating distribution grid level constraints. This work demonstrates benefits of coordinated dispatch of active and reactive power from EVs using a 33-node distribution feeder with large number of EVs (more than 5,000). Case studies demonstrate that, in constrained distribution grids, coordinated charging reduces the average cost of EV charging if the charging takes place at non-unity power factor mode compared to unity power factor. Similarly, the results also demonstrate that distribution grids can accommodate charging of increased number of EVs if EV charging takes place at non-unity power factor mode compared to the unity power factor. Next, this work utilizes detailed EV battery model that could be leveraged for its four-quadrant operations. Then, the developed work coordinates the operations of EVs and distribution feeder to support voltage profile on the grid in real time. The grid level problem is devised as a distribution optimal power flow model to compute voltage regulation signal to dispatch active/reactive power set points of individual EVs. The efficacy of the developed models are demonstrated by using a LV secondary feeder, where EVs\u27 operating in all four quadrants are shown to compensate the feeder voltage fluctuations caused by daily time varying residential loads, while honoring other operational constraints of the feeder. Furthermore, a novel grid application, called virtual power plant (VPP), is developed. Traditional nonlinear power flow problems are nonconvex, hence, time consuming to solve. In order to be used in real time simulation in VPP, an efficient linearized optimal power flow model is developed. This linearization method is used to solve a 534-bus power system with 3 VPPs in real-time. This work also implements VPP scheduling in real-time using OPAL-RT\u27s simulator in hardware-in-the-loop (HIL), where the loads are emulated using micro-controller devices

    Research on the Rules of Electronic Data Evidence Authentication

    Get PDF
    As a new type of evidence, electronic data has been fully confirmed in the legislative aspects of the three major procedural laws. However, there are still some problems in the judicial level, such as the lack of unity of meaning, the uncertainty of attribution and the lack of certification standards. The lack of certification standards is the most intractable problem. In this paper, the author uses the method of theoretical research and empirical research to analyze the judicial application of electronic data evidence, the existing problems, the causes and the corresponding solutions. The author suggests that the electronic data authentication specification should be set up as soon as possible, and the concrete practical work of the judges should be guided from two aspects of principles and rules, so that the concept of judicial standardization and the concept of free heart proof of judges are fully played in the field of electronic data evidence application
    • …
    corecore