280 research outputs found

    Spatially regularized T1 estimation from variable flip angles MRI

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134899/1/mp2747.pd

    Dynamic Visual Servoing with an Uncalibrated Eye-in-Hand Camera

    Get PDF

    Multi-Agent Combinatorial Path Finding with Heterogeneous Task Duration

    Full text link
    Multi-Agent Combinatorial Path Finding (MCPF) seeks collision-free paths for multiple agents from their initial locations to destinations, visiting a set of intermediate target locations in the middle of the paths, while minimizing the sum of arrival times. While a few approaches have been developed to handle MCPF, most of them simply direct the agent to visit the targets without considering the task duration, i.e., the amount of time needed for an agent to execute the task (such as picking an item) at a target location. MCPF is NP-hard to solve to optimality, and the inclusion of task duration further complicates the problem. This paper investigates heterogeneous task duration, where the duration can be different with respect to both the agents and targets. We develop two methods, where the first method post-processes the paths planned by any MCPF planner to include the task duration and has no solution optimality guarantee; and the second method considers task duration during planning and is able to ensure solution optimality. The numerical and simulation results show that our methods can handle up to 20 agents and 50 targets in the presence of task duration, and can execute the paths subject to robot motion disturbance

    Spherical Frustum Sparse Convolution Network for LiDAR Point Cloud Semantic Segmentation

    Full text link
    LiDAR point cloud semantic segmentation enables the robots to obtain fine-grained semantic information of the surrounding environment. Recently, many works project the point cloud onto the 2D image and adopt the 2D Convolutional Neural Networks (CNNs) or vision transformer for LiDAR point cloud semantic segmentation. However, since more than one point can be projected onto the same 2D position but only one point can be preserved, the previous 2D image-based segmentation methods suffer from inevitable quantized information loss. To avoid quantized information loss, in this paper, we propose a novel spherical frustum structure. The points projected onto the same 2D position are preserved in the spherical frustums. Moreover, we propose a memory-efficient hash-based representation of spherical frustums. Through the hash-based representation, we propose the Spherical Frustum sparse Convolution (SFC) and Frustum Fast Point Sampling (F2PS) to convolve and sample the points stored in spherical frustums respectively. Finally, we present the Spherical Frustum sparse Convolution Network (SFCNet) to adopt 2D CNNs for LiDAR point cloud semantic segmentation without quantized information loss. Extensive experiments on the SemanticKITTI and nuScenes datasets demonstrate that our SFCNet outperforms the 2D image-based semantic segmentation methods based on conventional spherical projection. The source code will be released later.Comment: 17 pages, 10 figures, under revie
    • …
    corecore