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Dynamic Visual Servoing with an Uncalibrated 
Eye-in-hand Camera1 

Hesheng Wang and Yun-Hui Liu 
The Chinese University of Hong Kong 

China 

1. Introduction  

Visual servoing is an approach to control motion of a robot manipulator using visual 
feedback signals from a vision system. Though the first systems date back to the late 1970s 
and early 1980s, it is not until the middle 1990s that there is a sharp increase in publications 
and working systems, due to the availability of fast and affordable vision processing 
systems (Hutchinson et al, 1996). 
There are many different ways of classifying the reported results: based on number of cameras 
used, generated motion command (2D, 3D), camera configuration, scene interpretation, 
underlying vision algorithms. We will touch upon these issues briefly in the following sections. 

1.1 Image-based and Position-based Visual Servoing 
Visual servo robot control overcomes the difficulties of uncertain models and unknown 
environments. Existing methods can be classified into two basic schemes, namely position-
based visual servo control (Fig. 1) and image-based visual servo control (Fig. 2). In both 
classes of methods, object feature points are mapped onto the camera image plane, and 
measurements of these points are used for robot control. A combination of the two schemes 
is called hybrid visual servoing. 
A position-based approach first uses an algorithm to estimate the 3-D position and 
orientation of the robot manipulator or the feature points from the images and then feeds 
the estimated position/orientation back to the robot controller. The main advantage of 
position-based visual servoing is that it controls the camera trajectory in the Cartesian space, 
which allows it to easily combine the visual positioning task with obstacles avoidance and 
singularities avoidance. Position-based methods for visual servoing seem to be the most 
generic approach to the problems, as they support arbitrary relative position with respect to 
the object.  The major disadvantage of position-based methods is that the 3D positions of the 
feature points must be estimated. In position-based visual servoing, feedback is computed 
using estimated quantities that are a function of the system calibration parameters. Hence, 
in some situations, position-based control can become extremely sensitive to calibration 
error. Since 3-D position/orientation estimation from images is subject to big noises, 
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position-based methods are weak to disturbances and measurement noises. Therefore, the 
position-based visual servoing is usually not adopted for servoing tasks. 

 

Figure 1. Position-based visual servoing 

 
Figure 2. Image-based visual servoing 

An image-based approach selects a set of feature points on the robot or the target object and 
directly employs their projection signals on the image plane of the camera in robot control. The 
general approach used in the image-based visual control methods is to control the robot 
motion in order to move the image plane features to desired positions. This usually involves 
the calculation of an image Jacobian or a composite Jacobian, the product of the image and 
robot Jacobian. A composite Jacobian relates differential changes in joint angles to differential 
changes in image features. The image-based control has the input command described directly 
in the feature space; it is then easy to generate the input trajectory. Since the feedback signals 
are projection errors on the image plane, image-based controllers are considered more robust 
to disturbances than position-based methods. Coarse calibration only affects the rate of 
convergence of the control law in the sense that a longer time is needed to reach the desired 
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position. One disadvantage of image-based methods compared to position-based methods is 
the presence of singularities in the feature mapping function, which reflect themselves as 
unstable points in the inverse Jacobian control law. The estimation of the image Jacobian 
requires knowledge of the camera intrinsic and extrinsic parameters. Extrinsic parameters also 
represent a rigid mapping between the scene or some reference frame and the camera frame. If 
one camera is used during the servoing process, the depth information needed to update the 
image Jacobian is lost. Therefore, many of the existing systems usually rely on a constant 
Jacobian that is computed for the desired camera/end–effector pose. This is one of the 
drawbacks of this approach, since the convergence is ensured only around the desired 
position. This problem may be solved by adaptive estimation of the depth. 

 

Figure 3. Fixed camera configuration 

 

Figure 4. Eye-in-hand camera configuration 

1.2 Fixed Camera and Eye-in-hand Configurations 

There are two possible configurations, namely fixed camera (eye-to-hand) configuration 
(Fig. 3) and eye-in-hand configuration (Fig. 4), to set up a vision system for visual servo 
control of robot manipulators. 
In a fixed camera setup, targets are mounted on a robot end-effector and the camera is fixed 
at a position near the manipulator. In this case, the camera does not move with the robot 
manipulator and its objective is to monitor motion of the robot. 
In an eye-in-hand setup, the camera is mounted at the end-effector of the robot manipulator 
so that it moves with the manipulator. The camera is to measure information of objects in 
the surrounding environment. The objective of this approach is to move the manipulator in 
such a way that the projection of either a moving or a static object be always at a desired 
location in the image captured by the camera 
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While each configuration has its own advantages and drawbacks, they both can be found in 
real applications. Eye-in-hand systems can be widely found in research laboratories and are 
being used in tele-operated inspection systems in hazardous environments such as nuclear 
factories. Fixed camera setups are used in vision-based pick-and-place at manufacturing 
lines, robots assisted by networked cameras, etc. 

1.3 Kinematics-based and Dynamic Visual Servoing 

Existing methods can also be classified into kinematics-based (Fig. 5) and dynamic methods 
(Fig. 6). Kinematics-based methods do not consider the nonlinear dynamics of the robot 
manipulator and design the controller based on the kinematics only. Kinematics-based methods 
decouple the designs of motion controller of manipulators and the visual controller under the 
assumption that the manipulator can perfectly perform the position or velocity control required 
in visual servoing. They change visual servoing into a problem of designing the velocity or 
position of the end-effector of the robot using the visual feedback signals. It is well known that 
the nonlinear robot forces have significant impact on robot motion, especially when the robot 
manipulator moves at high speed. Neglecting them not only decays the control accuracy but 
also results in instability. In a rigorous sense, the stability is not guaranteed for all kinematics-
based controllers. Kinematics-based controllers are suitable for slow robot motion only. 
Dynamic methods design the joint input directly, instead of the velocity of the end-effector, 
using the visual feedback and include the nonlinear robot dynamics in the control loop. The 
nonlinear centrifugal and Coriolis forces are compensated for in the control loop. Dynamic 
controllers guarantee the stability and are suitable for both slow and fast robot motions. 
Compared to kinematics-based methods, work on dynamic visual servoing is relatively limited, 
though the importance has been recognized for a long time by many researchers. This is mainly 
due to the difficulties in incorporating the nonlinear forces in controller design and the existence 
of the nonlinear scaling factors corresponding to the reciprocal of the depths of the feature 
points in the perspective projection. Since it is difficult to measure or estimate on-line the depths 
of the feature points, most dynamic controllers are subject to planar motions of robot 
manipulators only. 

 
Figure 5. Kinematic-based visual servoing 
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Figure 6. Dynamic visual servoing 

1.4 Related Work of Visual Servoing with Uncalibrated Eye-in-hand Camera 

Image-based eye-in-hand visual servoing is a problem of controlling the projections of 
image features to desired positions on the image plane of a camera mounted on a robot 
manipulator by controlling motion of the manipulator. Compared to a camera fixed in the 
workspace, an eye-in-hand camera enables the manipulator to view the workspace more 
flexibly. To implement a visual servo controller, an important step is to calibrate the intrinsic 
and extrinsic parameters of the camera. It is well known that camera calibration is costly and 
tedious. A survey of camera self-calibration could be referring to (Hemayed, 2003). To avoid 
camera calibration, many efforts have been made to uncalibrated visual seroving for which 
methods can be classified into kinematics-based controllers and dynamic controllers. 
In kinematics-based methods, the typical idea for uncalibrated visual servoing is to estimate 
the image Jaocbian or the depths of the features on-line. (Papanikolopoulos et al, 1995) 
developed an on-line estimation method to determine the depth information of the feature 
point. (Malis et al, 1999; 2004) proposed 2-1/2-D visual servoing to deal with uncalibrated 
camera intrinsic parameters. (Yoshimi & Allan, 1995) proposed an estimator of the image 
Jacobian for a peg-in-hole alignment task. (Hosoda & Asada, 1994) designed an on-line 
algorithm to estimate the image Jacobian. (Ruf et al, 1997) proposed a position-based visual 
servoing by adaptive kinematic prediction. (Pomares et al, 2007) proposed adaptive visual 
servoing by simultaneous camera calibration. Since the design of visual servo controller 
does not take the nonlinear robot dynamics into account, the stability of the overall system is 
not guaranteed even if the visual controller is stable. This is point out by many researchers 
such as (Bishop & Spong, 1997; Cheah et al, 2003; Deng et al, 2002; Hsu and Aquino, 1999; 
Kelly et al, 1999; Kim et al, 1995; Dixon, 2007; Shen et al, 2003).  
Dynamic methods design the joint input directly, instead of the velocity of the end-effector, 
using the visual feedback and include the nonlinear robot dynamics in the control loop. 
(Carelli et al, 2000) proposed an adaptive controller to estimate robot parameters for the eye-
in-hand setup. (Kelly et al, 2000) developed an adaptive controller for visual servoing of 
planar manipulators. The controller developed by (Hashimoto et al, 2002; Nagahama et al 
2002) incorporated the nonlinear robot dynamics in controller design and employed a 
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motion estimator to estimate motion of an object in a plane. In our early work, we proposed 
a new adaptive controller for uncalibrated visual servoing of 3-D manipulator using a fixed 
camera (Liu et al, 2005, 2006; Wang & Liu, 2006; Wang et al, 2007). The underlying idea in 
our controller is the development of the concept of the depth-independent interaction 
matrix (or image Jacobian) matrix to avoid the depth that appears in the denominator of the 
perspective projection equation. 

1.5 Outline of This Chapter 

A brief review of uncalibrated visual servoing is presented in this Chapter. Some 
prerequisite knowledge including camera parameters, perspective projection models, 
coordinate transformations, geometry relationship are discussed in detail. Then we focus on 
one typical problem in visual servoing: visual servoing with uncalibrated eye-in-hand 
camera. 
This paper extends our controller developed before (Liu et al, 2006) to image-based visual 
servoing of point features using an uncalibrated eye-in-hand camera. In an eye-in-hand 
setup in addition to the camera parameters, the 3-D coordinates of the features are not 
known either. Therefore, we need to estimate both the camera parameters and the 3-D 
coordinates on-line. The basic idea in the controller design is to use the depth-independent 
interaction (or image Jacobian) matrix so that the depth appearing in the denominator of the 
perspective projection equation can be avoided. To simultaneously estimate the camera 
parameters and the unknown 3-D coordinates of the features, we combine the Slotine-Li 
method with an on-line estimator designed on the basis of the idea of structure from motion 
in computer vision. The estimator uses the image sequence, captured during motion of the 
manipulator, to estimate the 3-D structure and the perspective projection matrix on-line by 
minimizing the Frobenius norm of the estimated projection errors. Based on the nonlinear 
dynamics of the manipulator, we have proved by the Lyapunov theory that the image errors 
will be convergent to zero and the unknown camera parameters and 3-D coordinates of the 
features are convergent to the real values up to a scale. Experiments have been conducted to 
validate the proposed methods. 
This Chapter is organized as follows. Section 2 will review the kinematics and the dynamics. 
Section 3 will present adaptive image-based visual servoing with unknown target positions. 
In Section 4, we will discuss adaptive visual servoing with unknown camera parameters and 
target positions. Section 5 presents the experimental results and Section 6 concludes the 
major results in this Chapter. 

2. Camera and Robot Model 

2.1 Problem Definition 

Consider an eye-in-hand set-up (Fig. 7), in which a vision system is mounted on the end-
effector to monitor a set of target points. Assume that the target points are fixed ones but 
their coordinates are not known. Suppose that the camera is a pin-hole camera with 
perspective projection (Fig. 8). Furthermore, we will consider two cases by assuming that 
the intrinsic parameters of the camera and the extrinsic parameters, i.e. the homogeneous 
transform matrix between the camera and the end-effector, are known or unknown.  
Problem 1: Given desired positions of the target points on the image plane, design a proper 
joint input for the manipulator such that the projections of the target points on the image 
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plane is asymptotically convergent to the desired positions. Assuming that only the target 3-
D position are unknown. 
Problem 2: Given desired positions of the target points on the image plane, design a proper 
joint input for the manipulator such that the projections of the target points on the image 
plane is asymptotically convergent to the desired positions. Assuming that both the 3-D 
coordinates of the target points and the intrinsic and extrinsic parameters of the camera are 
unknown. 
To simplify the discussion, we will assume that the target always remains in the field of 
view 

 

Figure 7.  An eye-in-hand setup for visual servoing 

 

Figure 8. Perspective projection 

2.2 Kinematics 

In Fig. 7, three coordinate frames, namely the robot base frame, the end-effector frame, and 
the camera frame, have been set up to represent motion of the manipulator. Denote the joint 

Cx

Cy

Cz û
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angle of the manipulator by q(t), and the homogenous coordinates of the target w.r.t. the 

robot base and the camera frames by x  and xc , respectively. Note that the x is a constant 

vector for the fixed target point and ( )Tb 1xx = . Denote the homogenous transform matrix 

of the end-effector with respect to the base frame by (q)Te , which can be calculated from the 

kinematics of the manipulator. Denote the homogeneous transformation matrix of the 

camera frame with respect to the end-effector frame by cT , which represents the camera 

extrinsic parameters. From the forward kinematics of the manipulator, we have 

 (q)xTTx 1
e

1
c

c −−=   (1) 

where 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

10

)()(
)(1 tt
te

ξR
T    (2) 

where )(tR  and )(tξ  are the rotation matrix and the translation vector from robot base 

frame to end-effector frame. 

Let Tvu )1,,(=y  express the homogenous coordinates of the projection of the target point 

on the image plane. Under the perspective projection model,  

 (q)xTΩTxΩy
1
e

1
c

c −−==
zz cc

11
  (3) 

where Ω  is determined by the  camera intrinsic parameters: 
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where α and γ are the scalar factors of the u and v axes of the image plane. ϕ  represents the 

angle between the two axes.  zc is the depth of the feature point with respect to the camera 

frame.  Denote by M the product of Ω  and 1
cT
− , i.e., 
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  (5) 

where T
ir denotes the i-th row vector of the rotation matrix of 1

cT
− , and T

zyx ppp ),,(  is its 

translational vector. The matrix M is called perspective projection matrix, which depends on 
the intrinsic and extrinsic parameters only.  Eq. (3) can be rewritten as 

 (q)xMTy
1

e
−=

zc
1

  (6) 
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The depth of the feature point is given by 

 (q)xTm
1
e

T
3

−=zc   (7) 

Where T
3m  denotes the third row vector of the perspective projection matrix M. 

 q(q)nq
q

(q)xTm T

(q)n

1
e

T
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T

$$
** )** ('
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∂

∂
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− )(
zc   (8) 

It is important to note: 
Property 1: A necessary and sufficient condition for matrix M to be a perspective projection matrix 
is that it has a full rank. 
By differentiating eq. (6), we obtain the following relation: 
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where the matrix A(q) is a matrix determined by  
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It should be noted that the image Jacobian matrix is the matrix A(q)
zc

1
. Matrix A(q) differs 

from the image Jacobian matrix by the scale factor. Here we call A(q) Depth-independent 
interaction matrix. Note that in the matrix A(q) the coordinates vector x is a constant vector. 
The products of the components of the perspective project matrix M and the components of 
the vector x are in the linear form in the Depth-independent interaction matrix. 
Proposition 1: Assume that the Jacobian matrix J(q(t)) of the manipulator is not singular. 

For any vector xb , the matrix 
q

x)(Te

∂

∂ − )(1 t
  has a rank of 3. 

Proof:  Substituting (10) into the matrix (9), we obtain 
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where sk is a matrix operator and )(xsk  with vector [ ]Txxx 321=x  can be written as a 

matrix form  
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Obviously, the matrix in (11) has a rank of 3. 
Proposition 2: The Dept- independent interaction matrix A(q)  has a rank of 2 if the matrix M is a 
perspective projection matrix. 
Proof: This proposition can be proved if we can show that the matrix D has a rank of 2. 
Assume that the rank of the matrix D is smaller than 2. Then, there exist nonzero scalars 

1λ and 2λ  such that  

 0)()( 21 =−+− 3231 mmmm vu λλ    (13) 

This equation can be written as  

 0)( 2121 =+−+ 321 mmm vu λλλλ   (14) 

If )( 21 vu λλ + is not zero, eq. (14) means that the row vectors of M are linearly dependent. If 

the coefficient is zero, the first two row vectors are linearly dependent. However, the row 
vectors must be linearly independent because the rank of M is 3. Therefore, the rank of the 
matrix D is 2.   

Property 2: For any vector ρ , the product A(q)ρ  can be written as a linear form of the unknown 

parameters ,i.e. 

 y)θq,Q(ρA(q)ρ ,=  (15) 

where y)q,Q(ρ, does not depend on the parameters representing the products of the camera 

parameters and the world coordinates of the target point.   

2.3 Robot Dynamics 

The dynamic equation of a robot manipulator has the form: 

 τG(q)q)qC(q,(q)HqH(q) =+++ $$$$$ )
2

1
(   (16) 

whereH(q) is the positive-definite and symmetric inertia matrix. )qC(q, $ is a skew-

symmetric matrix. The term G(q) represents the gravitational force, and τ  is the joint input 

of the robot manipulator. The first term on the left side of (16) is the inertial force, and the 
second term represents the Colioris and centrifugal forces.  

3. Adaptive Image-based Visual Servoing with Unknown Target Positions 

Our objective is to develop a controller that is able to estimate the unknown parameters on-
line while controlling motion of the manipulator. This problem differs from traditional 
adaptive control utilizing state feedback errors. The feedback signals here are the image 
errors, which are outputs of the system. Fortunately, the state information of the 
manipulator can be also obtained by the internal sensors, so the problem is slightly different 
from output adaptive control problems in nonlinear control theory. We propose to employ a 
hybrid feedback scheme that feeds back both the position and velocity (state) of the 
manipulator and the image errors (output).   
In this section, we assume that the world coordinates of the target point are unknown. 

Therefore the unknown parameters θ  here is only the three coordinate components of the 

target position x . 
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3.1 Controller Design 

Denote the desired position of the target point on the image plane by dy . The image error is 

given by: 

 dyyΔy −=   (17) 

Denote an estimation of the unknown parameters θ  by θ̂ . Using the estimation, we propose 

the following controller: 

 yBy(q)n(q)AqKG(q)τ TT
1 ∆∆+−−= )ˆ

2

1ˆ($   (18) 

The first term is to cancel the gravitational force. The second term is a velocity feedback. The 

last term represents the visual feedback. (q)Â  is the estimated Depth-independent 

interaction matrix calculated by the estimated parameters. (q)n̂  is an estimation of  vector 

n(q), 1K  and B are positive definite gain matrices.  It is important to note that 
zc

1
 does not 

appear in the controller. The quadratic form of y∆  is to compensate for the effect of the scale 

factor. Using the Depth-independent interaction matrix and including the quadratic term 
differentiates our controller from other existing ones. By substituting (18) into (16), we 
obtain: 
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   (19) 

From the Property 2, the last term can be represented as a linear form of the estimation 
errors of the parameters as follows:  

 θy)Y(q,yByn(q)n(q)A(q)A
TTT ∆=∆∆−+−− ])ˆ(

2

1
)ˆ[(   (20) 

where θθθ −=∆ ˆ  is the estimation error and the regressor y)Y(q,  does not depend on the 

unknown parameters. 

 

Figure 9. Projections of the target point on image planes 
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3.2 Estimation of the Parameters 

With the motion of the robot manipulator, the camera moves and captures the images of the 
target point from different view points (Fig. 9). What we need to estimate is the 3-D 
coordinates of the target point. The problem is similar to the projective structure from 
motion problem in computer vision. However, it should be pointed out that there are two 
differences here: 1) only the initial parameters need to be estimated and the remaining can 
be obtained from motion of the manipulator and 2) the estimation must be conducted on-
line. In the projective structure from motion, the basic idea is to find a solution of matrix M 
and x that minimizes the Frobenius norm given by 

 
2

1

)()( )x(qMTyE
1

e jj
c

l

j

ttz −

=

−=∑    (21) 

where l denotes the number of images captured by the cameras at difference configurations 

of the manipulator. Here jt  represents the time instant when the j-th image was captured. 

T
jjj tvtut )1),(),(()( =y  is image coordinates of the target point on the j-th image and )( jtq  

represents the corresponding joint angles. Note that the l images can be selected from the 
trajectory of camera. By substituting the estimated parameters in the Frobenius norm, we 
note that  
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From the result in computer vision, we have  
Proposition 3: If 2 images are selected from the trajectory of the camera, the equation  

 2,1,0))(),(( =∀=∆ jtt jj θyxW   (23) 

implies the estimated parameters can be estimated to the real values up to a scale..  
Based on the discussion above, we propose the following adaptive rule: 

 }))(),(())(),(({ˆ

1

1 ∑
=

− ∆+−=
l

j

jjjj tttt
dt

d θyxWKyxWqy)(q,YΓθ 3
TT $    (24) 

where Γ and 3K  are positive-definite and diagonal gain matrices. To simplify the notation, 

let 

 ))(),(( jj tt yxWWj =    (25) 

Remark 1: The adaptive algorithm (24) differs from Slotine and Li’s  algorithm (Slotine &Li, 1987 ) 
due to the existence of the last term and the potential force, which ensures the convergence of the 
estimated parameters to real values. 

3.3 Stability Analysis 

This section analyses the stability of the proposed controller.  
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Theorem 1: Under the control of the controller (18) and the adaptive algorithm (24) for parameters 
estimation, the image error of the target point is convergent to zero, i.e. 

 0lim =∆∞→ yt    (26) 

Furthermore, if a sufficient number of images are used in the adaptive algorithm, the estimated 

parameters are convergent to the real ones up to a scale. 

Proof:  Introduce the following positive function: 

 }{
2

1
)( θΓθyByqH(q)q

TTT ∆∆+∆∆+= ztV c$$   (27) 

Notice that 0>zc . Multiplying the T
q$ from the left to (19) results in 

 θy)Y(q,qyByn(q)qy(q)BAqqKqq(q)HqqH(q)q
TTTTT

1
TTT ∆+∆∆−∆−−=+ $$$$$$$$$$$ )(

2

1

2

1
  (28) 

From equation (9), we have 

 TTTT
yy(q)Aq $$$ ∆== zz cc   (29) 

Multiplying the Tθ∆  from the left to (24), we obtain 

 θWKWθqy)(q,Yθθθ j3
T
j

TTTT ∆∆−∆−=Γ∆∆ ∑
=

l

j 1

$$    (30) 

Differentiating the function V(t) results in  

 yByyByθΓθq(q)HqH(q)q
TTTT ∆∆+∆∆+∆∆++= zztV cc $$$$$$$$$

2

1
)

2

1
()(    (31) 

Note that  

 qn
T $$ =zc    (32) 

By combining the equations (28)-(32), we have  

  θWKWθqKq j3
T
j

T
1

T ∆∆−−= ∑
=

l

j

tV

1

)( $$$    (33) 

obviously we have 0)( ≤tV$ , and hence q$ , y∆  and θ∆  are all bounded. From (19) and (24), 

we know q$$  and θ$̂  are bounded respectively. Differentiating the function )(tV$  resulting in  

    θWKWθWθqKq j3
T
j

TT
j

T
1

T ∆∆+∆−−= ∑
=

)()(

1

$$$$$$$
l

j

tV   (34) 

Then, we can conclude that )(tV$$ is bounded. Consequently, from barbalat’s lemma, we have 

 

0))(),((lim

0ˆlim

0lim

=∆

=

=

∞→

∞→

∞→

θW

θ

q

jjt

t

t

tytx

$
$

   (35) 

www.intechopen.com



Robot Manipulators 

 

510 

The convergence of θWj∆  implies that the estimated matrix  θ̂   is convergent to the real 

values up to a scale. In order to prove the convergence of the image error, consider the 

invariant set of the system when 0)( =tV$ . From the close loop dynamics (19), at the 

invariant set, 

 0)ˆ
2

1ˆ( =∆∆+ yBynA
TT    (36) 

It is reasonable to assume that the manipulator is not at the singular configurations so that 

J(q)  is of full rank. Note that 
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Since it is guaranteed that 0ˆ ≠x  at the invariant set, the matrix 
q

x(q)T
1
e

∂

∂ − )ˆ(
 is not singular 

from Proposition 1. Then we proposed 

Proposition 4: The matrix TT
ynA ∆+ ˆ

2

1ˆ   has a rank of 2 if the matrix M̂  has a rank of 3. 

This proposition can be proved if we can show that the matrix E has a rank of 2. the proof is 
similar to Proposition 2. 
Therefore, from (36), it is obvious that at the invariant set the position error on the image 
plane must be zero, e.g. 

 0=∆y   (38) 

From the Barbalat’s lemma, we can conclude the convergence of the position error of the 
target point projections on the image plane to zero and convergence of the estimated 
parameters to the real values 

4. Adaptive Image-based Visual Servoing with Unknown Camera Parameters 
and Target Positions 

In this section, we assume that in addition to the 3-D coordinates of the target points, the 
intrinsic and extrinsic parameters of the camera are also unknown. Denote all the possible 

products of the components of matrix M and vector x by a vector lθ , which represents all 

the unknown parameters including the camera intrinsic and extrinsic parameters and the 
unknown world coordinates of the target point. It should be pointed out that there are 39 

unknown parameters in total. Here we fixed one parameters 1ˆ =zp  and define the left 38 

parameters as uniform parameters. Here we define 
z

kij

l
p

xm

ˆ

ˆˆ
ˆ =θ  and 

z

kij

l
p

xm
=θ , where 

4,,2,1o4,3,2,1,3,2,1,;38,...,1 =====∀ kjirkjil . 
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4.1 Controller Design 

Using the estimation, we propose the following controller similar to the previous section: 

 yBy(q)n(q)AqKG(q)τ TT
1 ∆∆+−−= )ˆ

2

1ˆ($    (39) 

By substituting (39) into (16), we obtain: 

 

yBy
n

(q)n
(q)A

(q)AyB
yn(q)(q)A

qKq)qC(q,(q)HqH(q)
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TTT

1
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∆

+−

−=++

])ˆ(
2

1
)ˆ[()

2

1
(

)
2

1
(

zzzz pppp

$$$$$$
  (40) 

From the Property 2, the last term can be represented as a linear form of the estimation 
errors of the parameters as follows:  

 l

zz pp
θy)Y(q,yBy

n
(q)n

(q)A
(q)A

T
T

∆=∆∆−+−− ])ˆ(
2

1
)ˆ[(   (41) 

where lll θθθ −=∆ ˆ  is the estimation error and the regressor y)Y(q,  does not depend on the 

unknown parameters. 

4.2 Estimation of the Parameters 

The idea is same as previous section, we minimizes the Frobenius norm, Since there are 38 

unknowns in lθ , 19 images are necessary for estimating the parameters. By substituting the 

estimated parameters in the Frobenius norm, we note that  
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   (42) 

From the result in computer vision, we have  
Proposition 5: If a sufficient number of images are selected from the trajectory of the camera, then  

 ljtt jj ,...,2,1,0))(),(( =∀=∆θyxW   (43) 

implies one of the following two cases:  
(1)  the estimated parameters can be estimated to the real values up to a scale, i.e.  

 θθ λ=ˆ  (44) 

By the definition of lθ , we can estimate the perspective projection matrix to the real one up to a scale. 

 MM λ=ˆ   (45) 

then matrix M̂  a rank of 3 from Property 1. 
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(2) The estimated parameters are zero. 

Proposition 6: If 0))(),(( =∆ ljj tt θyxW , we can avoid the trivial solution of 0ˆ =lθ . 

Proof: By fixing the parameter 1ˆ =zp  , if 0ˆ =lθ , we can obtain 1ˆˆˆ == −
x(q)Tm

1
e

T
3zc , which 

implies that  )())(),(( jljj ttt yθyxW =∆ . It is obviously wrong since we know that 

0))(),(( =∆ ljj tt θyxW . So we can avoid the trivial solution.  

Remark 2: By Proposition 6 and (44), it is easy to guaranteed that 0ˆ ≠x . 

The adaptive rule is simlar as (24) 

 }))(),(())(),(({ˆ

1

1 ∑
=

− ∆+−=
l

j

ljjjjl tttt
dt

d θyxWKyxWqy)(q,YΓθ 3
TT $    (46) 

4.3 Stability Analysis 

This section analyses the stability of the proposed controller. 
Theorem 2: Under the control of the controller (39) and the adaptive algorithm (46) for parameters 
estimation, the image error of the target point is convergent to zero, i.e. 

 0lim =∆∞→ yt  (47) 

Furthermore, the estimated parameters are convergent to the real values up to a scale: 
Proof:  Introduce the following positive function: 

 }{
2

1
)( θΓθyByqH(q)q

TTT ∆∆+∆∆+=
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z
tV $$   (48) 

Notice that 0>zp  and 0>zc . Multiplying the T
q$ from the left to (19) results in 
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Differentiating the function V(t) results in  

 yByyByθΓθq(q)HqH(q)q
TTTT ∆∆+∆∆+∆∆++= z

pp

z
tV c

zz

c

$$$$$$$$$
2

1
)

2

1
()(   (50)  

By proper simplification, we have  

  l
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tV θWKWθqKq j3
T
j

T
1
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)( $$$   (51) 

obviously we have 0)( ≤tV$ , and hence q$ , y∆  and lθ∆  are all bounded. From (19) and (46), 

we know q$$  and lθ
$̂

 are bounded respectively. Differentiating the function )(tV$  resulting in  
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Similar as Theorem 1, From the Barbalat’s lemma, we can conclude the convergence of the 
position error of the target point projections on the image plane to zero and convergence of 
the estimated parameters to the real values. 

4.4 Extension to Multiple Feature Points 

This controller can be directly extended to visual seroving using a number S of feature 
points. In control of multiple feature points, the dimension of the depth independent 
interaction matrix will increase, and hence the major difference will be the difference in 
computation time. A controller similar to that in (39) can be designed by 

 )())(ˆ
2

1ˆ()()(

1

tttttt

S

i

i
T
ii

T
i∑

=

∆∆+−−= yBy)(n)(AqK)G(qτ 1
$   (53) 

where )(A ti
ˆ  and )(n tiˆ  have a similar form to Eq. (10) and Eq. (7) for point i, respectively. 

)(tiy∆  is the image position error for i-th feature point. The image errors are convergent to 

zero when the number n of degrees of freedom of the manipulator is larger than or equal to 
2S. 

When n=6 and 3≥S , the convergence of image errors can also be guaranteed. It is well 

known that three non-collinear projections of fixed feature points on the image plane can 
uniquely define the 3-D position of the camera, and hence the projections of all other fixed 
feature points are uniquely determined. Therefore, if the projections of three feature points 
whose projections are convergent to their desired positions on the image plane, so are the 
projection of all other feature points. We can conclude the convergence of the image errors 
when the manipulator has equal or more degrees of freedom than 2S, or when the 
manipulator has 6 degrees of freedom. 

5. Experiments 

We have implemented the controller in a 3 DOF robot manipulator in the Chinese 
University of Hong Kong. Fig. 10 shows the experiment setup system. The moment inertia 
about its vertical axis of the first link of the manipulator is 0.005kgm2, the masses of the 
second and third links are 0.167 kg, and 0.1 kg, respectively. The lengths of the second and 
third links are, 0.145m and 0.1285m, respectively. The joints of the manipulator are driven 
by Maxon brushed DC motors. The powers of the motors are 20 watt, 10 watt, and 10watt, 
respectively.  The gear ratios at the three joints are 480:49, 12:1, and 384:49, respectively. 
High-precision Encoders are used to measure the joint angles. The joint velocities are 
obtained by differentiating the joint angles. A frame processor MATROX PULSAR installed 
in a PC with Intel Pentium II CPU acquires the video signal. This PC processes the image 
and extracts the image features. 

5.1 Control of One Feature Point with Unknown Target Positions 

We first set initial positions and record the image position of the point and then move the 
end-effector to another position and record that image position as the desired ones (Fig. 11).  

The control gains are 30=1K , 00006.0=B , 001.0=3K , 5000=Γ . The transformation 
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matrix of the base frame respect to the vision frame is 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000

1001

0010

0100

T , the initial 

estimated target position is [ ]T05.015.085.0 −=x . The real camera intrinsic parameters 

are 871=ua , 882=va , 3810 =u , 2780 =v . 

 

Figure 10. The experiment setup system 

 

Figure 11. The initial and desired (black square) positions 
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Figure 12. Position errors of the image feature  

 

Figure 13. The profile of the estimated parameters 
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As shown in Fig. 12, the image feature points asymptotically converge to the desired ones. 
The results confirmed the convergence of the image error to zero under control of the 
proposed method. Fig. 13 plots the profiles of the estimated parameters, which are not 
convergent to the true values. The sampling time in the experiment is 40ms. 

5.2 Control of One Feature Point with Unknown Camera Parameters and Target 
Positions  

The initial and final positions are same as Fig. 10.  The control gains are the same as 
previous experiments. The initial estimated transformation matrix of the base frame respect 

to the vision frame is 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

1000

13.0095.0

0010

095.003.0

T̂ , The initial estimated target position is 

[ ]T2.01.01ˆ −=x m. The estimated intrinsic parameters are 1000ˆ =ua , 1000ˆ =va , 

300ˆ
0 =u , 300ˆ

0 =v . The image errors of the feature points on the image plane are 

demonstrated in Fig. 14. Fig. 15 plots the profiles of the estimated parameters. 
This experiment showed that it is possible to achieve the convergence without camera 
parameters and target position information, by using the adaptive rule. 
 
 
 

 

Figure 14. Position errors of the image feature 
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Figure 15. The profile of the estimated parameters 

5.3 Control of Three Feature Points 

In the third experiment, we control three feature points whose coordinates with respect to 

the end-effector frames are  [ ]T2.01.01ˆ
1 −=x m,  [ ]T25.015.01ˆ

2 −=x m, and 

[ ]T15.015.01ˆ
3 −=x m, respectively. 

The initial and desired positions of the feature points are shown in Fig. 16. The image errors 
of the feature points on the image plane are demonstrated in Fig. 17. The experimental 
results confirmed that the image errors of the feature points are convergent to zero. The 
residual image errors are within one pixel. In this experiment, we employed three current 
positions of the feature points in the adaptive rule. The control gains used the experiments 

are 18=1K , 000015.0=B , 001.0=3K , 10000=Γ . The true values and initial estimations of 

the camera intrinsic and extrinsic parameters are as the same as those in previous 
experiments. 
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Figure 16. The initial and desired (black square) positions 

 

 

Figure 17. Position errors of the image features 
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6. Conclusion 

This Chapter presents a new adaptive controller for dynamic image-based visual servoing of 
a robot manipulator uncalibrated eye-in-hand visual feedback. To cope with nonlinear 
dependence of the image Jacobian on the unknown parameters, this controller employs a 
matrix called depth-independent interaction matrix which does not depend on the scale 
factors determined by the depths of target points. A new adaptive algorithm has been 
developed to estimate the unknown intrinsic and extrinsic parameters and the unknown 3-D 
coordinates of the target points. With a full consideration of dynamic responses of the robot 
manipulator, we employed the Lyapunov method to prove the convergence of the postion 
errors to zero and the convergence of the estimated parameters to the real values. 
Experimental results illustrate the performance of the proposed methods. 
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