37 research outputs found

    The Research of Product Graphical Information Sharing Technology of Virtual Manufacturing Enterprise in E-Commerce Environment

    Get PDF
    This paper has built a product model by UML and corresponding Product Schema. Then we have illuminated transmit mechanism of the product information by a dumbbell XML document. At last, we have pointed out the direction of the research. This research will provide a significative explore to the product data interchange between the members of virtual manufacturing enterprise in e-commerce environmen

    Robust controller design for ATM network with time - varying multiple time - delays

    Get PDF
    Makalenin ilk sayfası mevcuttur.For the congestion of the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays and changeful available bit-rate (ABR) bandwidth, an ABR flow controller is designed and the LMI-based delay-dependent stabilizability. criteria is proposed. The algorithm, which is independent of the derivative of varying delays, is less conservative and can be implemented easily. It also achieves two expectant goals, i.e. it satisfies a weighted fairness condition and ensures convergence of queue length to the desired steady-state value. Simulation results show that the control system is robust and rapid and the quality of service (QoS) is guaranteed

    Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity

    Get PDF
    Celastrol is a quinone methyl triterpenoid monomeric ingredient extracted from the root of Tripterygium wilfordii. Celastrol shows potential pharmacological activities in various diseases, which include inflammatory, obesity, cancer, and bacterial diseases. However, the application prospect of celastrol is largely limited by its low bioavailability, poor water solubility, and undesired off-target cytotoxicity. To address these problems, a number of drug delivery methods and technologies have been reported to enhance the efficiency and reduce the toxicity of celastrol. We classified the current drug delivery technologies into two parts. The direct chemical modification includes nucleic acid aptamer–celastrol conjugate, nucleic acid aptamer–dendrimer–celastrol conjugate, and glucolipid–celastrol conjugate. The indirect modification includes dendrimers, polymers, albumins, and vesicular carriers. The current technologies can covalently bond or encapsulate celastrol, which improves its selectivity. Here, we present a review that focalizes the recent advances of drug delivery strategies in enhancing the efficiency and reducing the toxicity of celastrol

    Global research trends of Mycoplasma pneumoniae pneumonia in children: a bibliometric analysis

    Get PDF
    BackgroundMycoplasma pneumoniae pneumonia (MPP), attributable to Mycoplasma pneumoniae (MP), represents a predominant form of community-acquired pneumonia in pediatric populations, thereby posing a significant threat to pediatric health. Given the burgeoning volume of research literature associated with pediatric MPP in recent years, it becomes imperative to undertake a bibliometric analysis aimed at delineating the current research landscape and emerging trends, thereby furnishing a framework for subsequent investigations.MethodsA comprehensive literature search targeting pediatric MPP was conducted in the Web of Science Core Collection. After the removal of duplicate entries through Endnote software, the remaining articles were subject to scientometric analysis via Citespace software, VOSviewer software and R language, focusing on variables such as publication volume, contributing nations, institutions and authors, references and keywords.ResultsA total of 1,729 articles pertinent to pediatric MPP were included in the analysis. China and the United States emerged as the nations with the highest publication output. Italian scholar Susanna Esposito and Japanese scholar Kazunobu Ouchi were the most influential authors in the domain of pediatric MPP. Highly-cited articles primarily focused on the epidemiological investigation of pediatric MPP, the clinical characteristics and treatment of macrolide-resistant MPP, and biomarkers for refractory Mycoplasma pneumoniae pneumonia (RMPP). From the corpus of 1,729 articles, 636 keywords were extracted and categorized into ten clusters: Cluster #0 centered on molecular-level typing of macrolide-resistant strains; Cluster #1 focused on lower respiratory tract co-infections; Clusters #2 and #6 emphasized other respiratory ailments caused by MP; Cluster #3 involved biomarkers and treatment of RMPP; Clusters #4 and #9 pertained to extrapulmonary complications of MPP, Clusters #5 and #7 addressed etiological diagnosis of MPP, and Cluster #8 explored pathogenic mechanisms.ConclusionsThe past few years have witnessed extensive attention directed towards pediatric MPP. Research in pediatric MPP principally revolves around diagnostic techniques for MP, macrolide resistance, complications of MPP, treatment and diagnosis of RMPP, and elucidation of pathogenic mechanisms. The present study provides pediatric clinicians and researchers with the research status and focal points in this field, thereby guiding the orientation of future research endeavors

    Anticancer Platelet-Mimicking Nanovehicles

    Get PDF
    A core-shell nanovehicle coated with a platelet membrane (PM) is developed for targeted and site-specific delivery of an extracellularly active drug and an intracellular functional small-molecular drug, leading to enhanced antitumor efficacy. This PM-coated nanovehicle can also effectively eliminate the circulating tumor cells in vivo and inhibit development of tumor metastasis

    Achieving Energy Guiding and Isolation by Utilizing Nonlinearities and Asymmetry in Structures

    No full text
    Almost all modern devices vibrate when working or being excited, and during this process, two things bring challenges to engineers: first, devices lose a substantial amount of energy to unwanted vibrations and noise because they transfer the desired energy to heat through damping and friction; Second, energy distribution during vibration is hard to control in some situations, which makes the devices exposed to wear and failure. Targeted Energy Transfer (TET) is one of the most prolific topics in the area of vibration mitigation and isolation, which involves the irreversible transfer of energy from a primary linear structure to a series of local, nonlinear attachments called nonlinear energy sinks (NESs). This work investigates the area which were not covered by TET theory, as well as expand the discussion of TET to various nonlinearity, different modes interactions and multi-dimensional energy dissipations to explore the essential mechanism behind nonlinear energy dissipation and expand the application of TET. The first portion discusses energy transfers in a 2 degree-of-freedom (DOF) structure with equivalent masses, by studying the nonlinear normal modes (NNMs) of the system, the interactions between NNMs that was governing the energy transfer in the structure was revealed. Then by applying different excitations to the structure, the energy transfer that is inversed to the TET theory was investigated and then validated. Next, a nonlinearity named quasi-zero stiffness (QZS) was investigated, by introducing the softening and hardening characteristics of the QZS spring, energy transfer from low to high frequencies was achieved, which compensate the limitations of typical cubic or stiffening nonlinearity and expand the capability of TET and efficient energy mitigation. Then, energy dissipation in a 2D structure using impacts and sliding was investigated. By introducing constrained motion in a superellipse model, the motion of and interactions between the impactor and ellipses were predicted and evaluated. This 2D energy absorber provides a paradigm for energy isolation of complex system
    corecore