1,210 research outputs found
Load direction-dependent influence of forming-induced initial damage on the fatigue performance of 16MnCrS5 steel
Forming processes influence the mechanical properties of manufactured workpieces in general and by means of forming-induced initial damage in particular. The effect of the latter on performance capability is the underlying research aspect for the investigations conducted. In order to address this aspect, fatigue tests under compressive, tensile and compressive-tensile loads were set-up with discrete block-by-block increased amplitudes and constant amplitudes, and performed up to fracture or distinct lifetimes. Aiming at the correlation of the macroscale mechanical testing results at the mesoscale, intensive metallographic investigations of cross-sections using the microscopical methods of secondary electron analysis, energy dispersive spectroscopy and electron backscatter diffraction were performed. Thereby, the correlation of forming-induced initial damage and fatigue performance was determined, the relevance of compressive loads for the cyclic damage evolution was shown, and material anisotropy under compressive loads was indicated. Finally, the need was addressed to perform further investigations regarding crack propagations and crack arrest investigations in order to clarify the mechanism by which initial damage affects cyclic damage evolution. The relevance of the principal stress axis relative to the extrusion direction was emphasized and used as the basis of an argument for investigations under load paths with different stress directions
Performance related characterization of forming-Induced initial damage in 16MnCrS5 steel under a torsional forward-reverse loading path at LCF regime
Forming technology and in particular cold forward rod extrusion is one of the key manufacturing technologies with regard to the production of shafts. The selection of process parameters determines the global and local material properties. This particularly implies forming-induced initial damage in representation of pores. On this background, this study aims on describing the influence of these pores in the performance of the material 16MnCrS5 (DIN 1.7139, AISI/SAE 5115) under a torsional load path in the low cycle fatigue regime, which is highly relevant for shafts under operation conditions. For this purpose, the method of cyclic forward-reverse torsional testing was applied. Additionally, intermittent testing method and the characterization of the state of crack growth using selective electron microscopy analysis of the surface were combined. A first attempt was made to describe the influence of forming-induced initial damage on the fatigue performance and the crack growth mechanisms. The correlation of fatigue performance and initial damage was contiguous in the sense that the initial damage corresponds with a decrease of material performance. It was concluded that the focus of further investigations must be on small crack growth and the related material changes to identify the role of initial damage under cyclic loads
Quantitative temporal logics over the reals: PSpace and below
AbstractIn many cases, the addition of metric operators to qualitative temporal logics (TLs) increases the complexity of satisfiability by at least one exponential: while common qualitative TLs are complete for NP or PSpace, their metric extensions are often ExpSpace-complete or even undecidable. In this paper, we exhibit several metric extensions of qualitative TLs of the real line that are at most PSpace-complete, and analyze the transition from NP to PSpace for such logics. Our first result is that the logic obtained by extending since-until logic of the real line with the operators ‘sometime within n time units in the past/future’ is still PSpace-complete. In contrast to existing results, we also capture the case where n is coded in binary and the finite variability assumption is not made. To establish containment in PSpace, we use a novel reduction technique that can also be used to prove tight upper complexity bounds for many other metric TLs in which the numerical parameters to metric operators are coded in binary. We then consider metric TLs of the reals that do not offer any qualitative temporal operators. In such languages, the complexity turns out to depend on whether binary or unary coding of parameters is assumed: satisfiability is still PSpace-complete under binary coding, but only NP-complete under unary coding
Quantitative Temporal Logics: PSpace and below
Often the addition of metric operators to qualitative temporal logics leads to an increase of the complexity of satisfiability by at least one exponential. In this paper, we exhibit a number of metric extensions of qualitative temporal logics of the real line that do not lead to an increase in computational complexity. The main result states that the language obtained by extending since/until logic of the real line with the operators 'sometime within n time units', n coded in binary, is PSpace-complete even without the finite variability assumption. Without qualitative temporal operators the complexity of this language turns out to depend on whether binary or unary coding of parameters is assumed: it is still PSpace-hard under binary coding but in NP under unary coding
Effect of microstructural heterogeneity on fatigue strength predicted by reinforcement machine learning
The posterior statistical distributions of fatigue strength are determined using Bayesian inferential statistics and the Metropolis Monte Carlo method. This study explores how structural heterogeneity affects ultrahigh cycle fatigue strength in additive manufacturing. Monte Carlo methods and procedures may assist estimate fatigue strength posteriors and scatter. The acceptable probability in Metropolis Monte Carlo relies on the Markov chain's random microstructure state. In addition to commonly studied variables, the proportion of chemical composition was demonstrated to substantially impact fatigue strength if fatigue lifetime in crack propagation did not prevail due to high threshold internal notches. The study utilizes an algorithm typically used for quantum mechanics to solve the complicated multifactorial fatigue problem. The inputs and outputs are modified by fitting the microstructural heterogeneities into the Metropolis Monte Carlo algorithm. The main advantage here is applying a general-purpose nonphenomenological model that can be applied to multiple influencing factors without high numerical penalty
Let’s talk about risk! : Stock market effects of risk disclosure for European energy utilities
We analyze how risk reporting by European energy utilities is related to uncertainty about firms’ future prospects. Using an unsupervised machine learning topic model, we classify the content of the risk reports presented in the notes to the financial statements into different risk topics over the period from 2007 to 2017. We find that more risk reporting is related to lower idiosyncratic volatility and that this relation is especially evident for reporting about credit risk, risk management processes, economic risk, and accounting-related risk. We also find that the uncertainty-decreasing effect of risk disclosure extends to a positive relation between risk disclosure and firm value. Our study contributes to the call for more transparency in risk reporting and disclosure. Interestingly, we are unable to identify a climate-related risk topic, and further tests show only a rudimentary disclosure of climate-related risks. Combining the usefulness of the current risk disclosure regulation with the current lack of climate-related risk disclosures, we see good reasons for increased mandatory climate-related risk disclosures
Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy
This study was aimed at investigating the effect of internal porosity on the fatigue strength of wire + arc additive manufactured titanium alloy (WAAM Ti-6Al-4V). Unlike similar titanium alloys built by the powder bed fusion processes, WAAM Ti-6Al-4V seldom contains gas pores. However, feedstock may get contaminated that may cause pores of considerable size in the built materials. Two types of specimens were tested: (1) control group without porosity referred to as reference specimens; (2) designed porosity group using contaminated wires to build the specimen gauge section, referred to as porosity specimens. Test results have shown that static strength of the two groups was comparable, but the elongation in porosity group was reduced by 60% and its fatigue strength was 33% lower than the control group. The stress intensity factor range of the crack initiating pore calculated by Murakami’s approach has provided good correlation with the fatigue life. The kink point on the data fitting curve corresponds well with the threshold value of the stress intensity factor range found in the literature. For predicting the fatigue limit, a modified Kitagawa-Takahashi diagram was proposed consisting of three regions depending on porosity size. Critical pore diameter was found to be about 100 µm
A single ion as a shot noise limited magnetic field gradient probe
It is expected that ion trap quantum computing can be made scalable through
protocols that make use of transport of ion qubits between sub-regions within
the ion trap. In this scenario, any magnetic field inhomogeneity the ion
experiences during the transport, may lead to dephasing and loss of fidelity.
Here we demonstrate how to measure, and compensate for, magnetic field
gradients inside a segmented ion trap, by transporting a single ion over
variable distances. We attain a relative magnetic field sensitivity of \Delta
B/B_0 ~ 5*10^{-7} over a test distance of 140 \micro m, which can be extended
to the mm range, still with sub \micro m resolution. A fast experimental
sequence is presented, facilitating its use as a magnetic field gradient
calibration routine, and it is demonstrated that the main limitation is the
quantum shot noise.Comment: 5 pages, 3 figure
- …