9 research outputs found

    Volatiles and Intraplate Magmatism: a Variable Role for Carbonated and Altered Oceanic Lithosphere in Ocean Island Basalt Formation

    Get PDF
    Recycling of material at subduction zones has fundamental implications for melt composition and mantle rheology. Ocean island basalts (OIBs) sample parts of the mantle from variable depths that have been diversely affected by subduction zone processes and materials, including the subducted slab, metasomatising melts and fluids. Resultant geochemical differences are preserved at a variety of scales from melt inclusions to whole rocks, from individual islands to chains of islands. Here we examine a global dataset of ocean island basalt compositions with a view to understanding the connection between silica-saturation, olivine compositions, and halogens in glass and olivine-hosted melt inclusions to reveal information regarding the mantle sources of intraplate magmatism. We find that minor elements incorporated into olivine, although informative, cannot unambiguously discriminate between different source contributions, but indicate that none of the OIB analysed here are derived solely from dry peridotite melting. Nor can differences in lithospheric thickness explain trace element variability in olivine between different ocean islands. We present new halogen (F, Cl, Br/Cl, I/Cl) data along with incompatible trace element data for the global array and encourage measurement of fluorine along with heavier halogens to obtain better insight into halogen cycling. We suggest that Ti-rich silica-undersaturated melts require a contribution from carbonated lithosphere, either peridotite or eclogite and are an important component sampled by ocean island basalts, together with altered oceanic crust. These results provide new insights into our understanding of mantle-scale geochemical cycles, and also lead to the potential for the mantle transition zone as an underestimated source for observed volatile and trace-element enrichment in ocean island basalts

    Investigating ocean island mantle source heterogeneity with boron isotopes in melt inclusions

    Get PDF
    Recycling of the lithosphere via subduction drives the trace element and isotopic heterogeneity of the mantle, yet, the inventory of volatile elements in the diverse array of mantle reservoirs sampled at ocean islands remains uncertain. Boron is an ideal tracer of volatile recycling because it behaves similarly to volatiles during high-temperature geochemical reactions and carries a distinctive isotope signature into the mantle, but is subsequently little-influenced by degassing on return to the surface. Furthermore, B-rich recycled lithologies will have a strong influence on typical upper mantle compositions characterized by low B concentrations (<0.2 μg/g and δ11B −7.1 ± 0.9‰). Here, we present and compare the B abundances and isotope compositions, together with the volatile element contents (H₂O, CO₂, and Cl) of basaltic glasses and olivine-hosted melt inclusions from two different ocean island localities (La Palma, Canary Islands, and Piton de Caille, La Réunion Island). Our results suggest that olivine hosted melt inclusions are protected from contamination during ascent and provide more robust estimates of primary mantle source δ11B than previous bulk rock studies. We find that the δ11B of the La Réunion samples (−7.9 ± 0.5‰ (2σ)) overlaps with the recently defined MORB datum, indicating that the depleted upper-mantle and ‘primitive mantle’ reservoirs are indistinguishable with respect to δ11B, or that B concentrations are sufficiently low that they are diluted by partial melting in the uppermost mantle. In contrast, the La Palma samples, notable for their radiogenic Pb isotope ratios, are characterized by δ11B values that are distinctly isotopically lighter (−10.5 ± 0.7‰ (2σ)) than La Réunion or MORB. We suggest these isotopically light values are derived from significantly dehydrated recycled materials preserved in the La Palma mantle source region, in keeping with their lower B/Zr and H₂O/Ce. This work therefore provides strong new support for subduction zone processing as a mechanism for generating radiogenic Pb isotopic signatures and volatiles heterogeneities in the mantle

    Boron recycling in the mantle: Evidence from a global comparison of ocean island basalts

    Get PDF
    Radiogenic and noble gas isotopes have been integral for demonstrating the existence, source, and age of (geo) chemical reservoirs in the mantle, yet, the volatile element composition of the Earth’s interior remains poorly characterized. Boron isotopes have the potential to constrain the processes that generate distinct mantle reservoirs, as they fractionate strongly at the surface of the Earth and during subduction but are little perturbed during high-temperature mantle processes, and so can inform our understanding of mantle volatile cycling. Here, we present the largest, internally consistent, high-precision B isotope dataset from ocean island basalt (OIB) glasses and olivine-hosted melt inclusions measured by Secondary Ion Mass Spectrometry (SIMS) to date, including new data derived from the Pitcairn Islands, Tristan da Cunha, St. Helena, Ascension Island, the MacDonald (Ra) Seamount, and Fogo (Cape Verde Islands) in addition to previously published data from La Réunion, La Palma (Canary Islands), Iceland, and Hawai’i. This dataset allows a comparison of ocean island basalts that contain heterogeneous recycled components (e.g., Pitcairn Islands) to those with primordial components (e.g., La Réunion) in their sources. We focus on basaltic glass and melt inclusions (>6 wt% MgO) as they are least affected by shallow differentiation and assimilation processes. We find that our new OIB data show a limited spread in average δ11B (−5.9 ± 3.0‰ to −10.8 ± 0.7‰), which is smaller compared to previous OIB studies. These data generally overlap with mid-ocean ridge basalts (MORB; −7.1 ± 0.9‰) and display lighter values when compared to mafic arc magmas (∼−9 to +20‰). Importantly, some trace element enriched OIB endmembers display lighter δ11B values and lower B/P and B/Zr, indicative of a source with lower B concentrations relative to the primordial mantle. This suggests that the deeper mantle is becoming increasingly B-depleted over time because boron is effectively stripped from recycled lithologies during subduction and slab dehydration. In addition, the results highlight the decoupling of B isotopes from radiogenic (Sr, Pb) isotopes providing a new perspective on volatile recycling
    corecore