2,311 research outputs found
The Effect of Columnar Disorder on the Superconducting Transition of a Type-II Superconductor in Zero Applied Magnetic Field
We investigate the effect of random columnar disorder on the superconducting
phase transition of a type-II superconductor in zero applied magnetic field
using numerical simulations of three dimensional XY and vortex loop models. We
consider both an unscreened model, in which the bare magnetic penetration
length is approximated as infinite, and a strongly screened model, in which the
magnetic penetration length is of order the vortex core radius. We consider
both equilibrium and dynamic critical exponents. We show that, as in the
disorder free case, the equilibrium transitions of the unscreened and strongly
screened models lie in the same universality class, however scaling is now
anisotropic. We find for the correlation length exponent , and
for the anisotropy exponent . We find different dynamic
critical exponents for the unscreened and strongly screened models.Comment: 30 pages 12 ps figure
Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects
The inverse square law of gravity is poorly probed by experimental tests at
distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and
11 spacecraft have shown an unmodeled acceleration directed toward the Sun
which was not explained by any obvious spacecraft systematics, and occurred
when at distances greater than 20 AUs from the Sun. If this acceleration
represents a departure from Newtonian gravity or is indicative of an additional
mass distribution in the outer solar system, it should be detectable in the
orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from
Newtonian gravity, we have selected a well observed sample of TNOs found
orbiting between 20 and 100 AU from the Sun. By examining their orbits with
modified orbital fitting software, we place tight limits on the perturbations
of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro
Force generation in small ensembles of Brownian motors
The motility of certain gram-negative bacteria is mediated by retraction of
type IV pili surface filaments, which are essential for infectivity. The
retraction is powered by a strong molecular motor protein, PilT, producing very
high forces that can exceed 150 pN. The molecular details of the motor
mechanism are still largely unknown, while other features have been identified,
such as the ring-shaped protein structure of the PilT motor. The surprisingly
high forces generated by the PilT system motivate a model investigation of the
generation of large forces in molecular motors. We propose a simple model,
involving a small ensemble of motor subunits interacting through the
deformations on a circular backbone with finite stiffness. The model describes
the motor subunits in terms of diffusing particles in an asymmetric,
time-dependent binding potential (flashing ratchet potential), roughly
corresponding to the ATP hydrolysis cycle. We compute force-velocity relations
in a subset of the parameter space and explore how the maximum force (stall
force) is determined by stiffness, binding strength, ensemble size, and degree
of asymmetry. We identify two qualitatively different regimes of operation
depending on the relation between ensemble size and asymmetry. In the
transition between these two regimes, the stall force depends nonlinearly on
the number of motor subunits. Compared to its constituents without
interactions, we find higher efficiency and qualitatively different
force-velocity relations. The model captures several of the qualitative
features obtained in experiments on pilus retraction forces, such as roughly
constant velocity at low applied forces and insensitivity in the stall force to
changes in the ATP concentration.Comment: RevTex 9 pages, 4 figures. Revised version, new subsections in Sec.
III, removed typo
Can Minor Planets be Used to Assess Gravity in the Outer Solar System?
The twin Pioneer spacecraft have been tracked for over thirty years as they
headed out of the solar system. After passing 20 AU from the Sun, both
exhibited a systematic error in their trajectories that can be interpreted as a
constant acceleration towards the Sun. This Pioneer Effect is most likely
explained by spacecraft systematics, but there have been no convincing
arguments that that is the case. The alternative is that the Pioneer Effect
represents a real phenomenon and perhaps new physics. What is lacking is a
means of measuring the effect, its variation, its potential anisotropies, and
its region of influence. We show that minor planets provide an observational
vehicle for investigating the gravitational field in the outer solar system,
and that a sustained observation campaign against properly chosen minor planets
could confirm or refute the existence of the Pioneer Effect. Additionally, even
if the Pioneer Effect does not represent a new physical phenomenon, minor
planets can be used to probe the gravitational field in the outer Solar System
and since there are very few intermediate range tests of gravity at the
multiple AU distance scale, this is a worthwhile endeavor in its own right.Comment: Accepted for publication in The Astrophysical Journa
Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas
We have studied the nonlinear current-voltage characteristic of a two
dimensional lattice Coulomb gas by Monte Carlo simulation. We present three
different determinations of the power-law exponent of the nonlinear
current-voltage characteristic, . The determinations rely on
both equilibrium and non-equilibrium simulations. We find good agreement
between the different determinations, and our results also agree closely with
experimental results for Hg-Xe thin film superconductors and for certain single
crystal thin-film high temperature superconductors.Comment: late
Gravitational solution to the Pioneer 10/11 anomaly
A fully relativistic modified gravitational theory including a fifth force
skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The
theory allows for a variation with distance scales of the gravitational
constant G, the fifth force skew symmetric field coupling strength omega and
the mass of the skew symmetric field mu=1/lambda. A fit to the available
anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a
phenomenological representation of the "running" constants and values of the
associated parameters are shown to exist that are consistent with fifth force
experimental bounds. The fit to the acceleration data is consistent with all
current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4)
and (12) and a third table including our predictions for the anomalous
perihelion advance of the planets was adde
Vortex glass transition in a random pinning model
We study the vortex glass transition in disordered high temperature
superconductors using Monte Carlo simulations. We use a random pinning model
with strong point-correlated quenched disorder, a net applied magnetic field,
longrange vortex interactions, and periodic boundary conditions. From a finite
size scaling study of the helicity modulus, the RMS current, and the
resistivity, we obtain critical exponents at the phase transition. The new
exponents differ substantially from those of the gauge glass model, but are
consistent with those of the pure three-dimensional XY model.Comment: 7 pages RevTeX, 4 eps figure
Resistance scaling at the Kosterlitz-Thouless transition
We study the linear resistance at the Kosterlitz-Thouless transition by Monte
Carlo simulation of vortex dynamics. Finite size scaling analysis of our data
show excellent agreement with scaling properties of the Kosterlitz-Thouless
transition. We also compare our results for the linear resistance with
experiments. By adjusting the vortex chemical potential to an optimum value,
the resistance at temperatures above the transition temperature agrees well
with experiments over many decades.Comment: 7 pages, 4 postscript figures included, LATEX, KTH-CMT-94-00
Interaction between clients and physiotherapists in group exercise classes in geriatric rehabilitation
The aim of this paper is to explore how older people construct their interaction in group exercise classes in geriatric rehabilitation and what is their contribution to the interaction. Discourse analysis was employed and data, consisting of seven videotaped group-based exercise sessions, were collected from 52 older people (aged 66–93 years) and nine rehabilitation professionals in seven rehabilitation centres. Four discourse categories were found. In “taciturn exercising”, older people remained verbally silent but physically active. In “submissive disagreeing”, older people opposed the professionals’ agenda by displaying reluctant consent to proposals. In “resilient endeavouring”, older adults persisted on their course of action, regardless of the disapproval of the professionals. In “lay helping”, older people initiated spontaneous encouragement, but also gave verbal and physical assistance to their peers. Older people's meaningful contribution to interaction, whilst it may challenge the institutional flow of activities, can constitute an integral part of the re-ablement process of rehabilitation
Absence of a Phase Transition in a Three--Dimensional Vortex Glass Model with Screening
We study the gauge glass model for the vortex glass transition in type--II
superconductors, including screening of the interaction between vortices.
{}From the size dependence of the domain wall energy we find that, in
two--dimensions, the transition is at both with and without screening but
the exponents are different in the two cases. In three-dimensions, we find that
screening destroys the finite temperature transition found earlier when
screening was neglected.Comment: 11 pages plus LaTeX with Revtex macros, 3 postscript figures,
uuencoded and compressse
- …