370 research outputs found

    Anyonic Excitations in Fast Rotating Bose Gases

    Full text link
    The role of anyonic excitations in fast rotating harmonically trapped Bose gases in a fractional Quantum Hall State is examined. Standard Chern-Simons anyons as well as "non standard" anyons obtained from a statistical interaction having Maxwell-Chern-Simons dynamics and suitable non minimal coupling to matter are considered. Their respective ability to stabilize attractive Bose gases under fast rotation in the thermodynamical limit is studied. Stability can be obtained for standard anyons while for non standard anyons, stability requires that the range of the corresponding statistical interaction does not exceed the typical wavelength for the atoms.Comment: 6 pages. Presented at the "School on Quantum Phase Transitions and Non-Equilibrium Phenomena in Cold Atomic Gases", ICTP Trieste, 11-22 july 200

    Linear Connections on the Two Parameter Quantum Plane

    Full text link
    We apply a recently proposed definition of a linear connection in non commutative geometry based on the natural bimodule structure of the algebra of differential forms to the case of the two-parameter quantum plane. We find that there exists a non trivial family of linear connections only when the two parameters obeys a specific relation.Comment: 7 pages, Te

    κ\kappa-Poincar\'e invariant quantum field theories with KMS weight

    Full text link
    A natural star product for 4-d κ\kappa-Minkowski space is used to investigate various classes of κ\kappa-Poincar\'e invariant scalar field theories with quartic interactions whose commutative limit coincides with the usual ϕ4\phi^4 theory. κ\kappa-Poincar\'e invariance forces the integral involved in the actions to be a twisted trace, thus defining a KMS weight for the noncommutative (C*-)algebra modeling the κ\kappa-Minkowski space. The associated modular group and Tomita modular operator are characterized. In all the field theories, the twist generates different planar one-loop contributions to the 2-point function which are at most UV linearly diverging. Some of these theories are free of UV/IR mixing. In the others, UV/IR mixing shows up in non-planar contributions to the 2-point function as a polynomial singularity at exceptional zero external momenta while staying finite at non-zero external momenta. These results are discussed together with the possibility for the KMS weight relative to the quantum space algebra to trigger the appearance of KMS state on the algebra of observables.Comment: 32 pages, several paragraphs added, published in PR

    Symmetries of noncommutative scalar field theory

    Full text link
    We investigate symmetries of the scalar field theory with harmonic term on the Moyal space with euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can be restored also at the quantum level by restricting the symplectic structures to a particular orbit.Comment: 12 pages, revised versio

    Using mixed data in the inverse scattering problem

    Full text link
    Consider the fixed-ℓ\ell inverse scattering problem. We show that the zeros of the regular solution of the Schr\"odinger equation, rn(E)r_{n}(E), which are monotonic functions of the energy, determine a unique potential when the domain of the energy is such that the rn(E)r_{n}(E) range from zero to infinity. This suggests that the use of the mixed data of phase-shifts {δ(ℓ0,k),k≥k0}∪{δ(ℓ,k0),ℓ≥ℓ0}\{\delta(\ell_0,k), k \geq k_0 \} \cup \{\delta(\ell,k_0), \ell \geq \ell_0 \}, for which the zeros of the regular solution are monotonic in both domains, and range from zero to infinity, offers the possibility of determining the potential in a unique way.Comment: 9 pages, 2 figures. Talk given at the Conference of Inverse Quantum Scattering Theory, Hungary, August 200

    Anyonic Excitations in Fast Rotating Bose Gases Revisited

    Full text link
    The role of anyonic excitations in fast rotating harmonically trapped Bose gases in a fractional Quantum Hall state is examined. Standard Chern-Simons anyons as well as "non standard" anyons obtained from a statistical interaction having Maxwell-Chern-Simons dynamics and suitable non minimal coupling to matter are considered. Their respective ability to stabilize attractive Bose gases under fast rotation in the thermodynamical limit is studied. Stability can be obtained for standard anyons while for non standard anyons, stability requires that the range of the corresponding statistical interaction does not exceed the typical wavelenght of the atoms.Comment: 5 pages. Improved version to be published in Phys. Rev. A, including a physical discussion on relevant interactions and scattering regime together with implication on the nature of statistical interactio

    On Auxiliary Fields in BF Theories

    Full text link
    We discuss the structure of auxiliary fields for non-Abelian BF theories in arbitrary dimensions. By modifying the classical BRST operator, we build the on-shell invariant complete quantum action. Therefore, we introduce the auxiliary fields which close the BRST algebra and lead to the invariant extension of the classical action.Comment: 7 pages, minor changes, typos in equations corrected and acknowledgements adde

    Connes distance by examples: Homothetic spectral metric spaces

    Full text link
    We study metric properties stemming from the Connes spectral distance on three types of non compact noncommutative spaces which have received attention recently from various viewpoints in the physics literature. These are the noncommutative Moyal plane, a family of harmonic Moyal spectral triples for which the Dirac operator squares to the harmonic oscillator Hamiltonian and a family of spectral triples with Dirac operator related to the Landau operator. We show that these triples are homothetic spectral metric spaces, having an infinite number of distinct pathwise connected components. The homothetic factors linking the distances are related to determinants of effective Clifford metrics. We obtain as a by product new examples of explicit spectral distance formulas. The results are discussed.Comment: 23 pages. Misprints corrected, references updated, one remark added at the end of the section 3. To appear in Review in Mathematical Physic
    • …
    corecore