396 research outputs found
Simulating the Multi-Epoch Direct Detection Technique to Isolate the Thermal Emission of the Non-Transiting Hot Jupiter HD187123B
We report the 6.5 detection of water from the hot Jupiter HD187123b
with a Keplerian orbital velocity of 53 13 km/s. This high
confidence detection is made using a multi-epoch, high resolution, cross
correlation technique, and corresponds to a planetary mass of
1.4 and an orbital inclination of 21 5.
The technique works by treating the planet/star system as a spectroscopic
binary and obtaining high signal-to-noise, high resolution observations at
multiple points across the planet's orbit to constrain the system's binary
dynamical motion. All together, seven epochs of Keck/NIRSPEC -band
observations were obtained, with five before the instrument upgrade and two
after. Using high resolution SCARLET planetary and PHOENIX stellar spectral
models, along with a line-by-line telluric absorption model, we were able to
drastically increase the confidence of the detection by running simulations
that could reproduce, and thus remove, the non-random structured noise in the
final likelihood space well. The ability to predict multi-epoch results will be
extremely useful for furthering the technique. Here, we use these simulations
to compare three different approaches to combining the cross correlations of
high resolution spectra and find that the Zucker 2003 log(L) approach is least
affected by unwanted planet/star correlation for our HD187123 data set.
Furthermore, we find that the same total S/N spread across an orbit in many,
lower S/N epochs rather than fewer, higher S/N epochs could provide a more
efficient detection. This work provides a necessary validation of multi-epoch
simulations which can be used to guide future observations and will be key to
studying the atmospheres of further separated, non-transiting exoplanets.Comment: Accepted to AJ, 14 pages, 10 figure
From Fatalism to Mitigation: a Conceptual Framework for Mitigating Fetal Programming of Chronic Disease by Maternal Obesity
Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci – diet and physical activity – in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children
EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
We have discovered a doubly eclipsing, bound, quadruple star system in the
field of K2 Campaign 7. EPIC 219217635 is a stellar image with that
contains an eclipsing binary (`EB') with d and a second EB with
d. We have obtained followup radial-velocity (`RV')
spectroscopy observations, adaptive optics imaging, as well as ground-based
photometric observations. From our analysis of all the observations, we derive
good estimates for a number of the system parameters. We conclude that (1) both
binaries are bound in a quadruple star system; (2) a linear trend to the RV
curve of binary A is found over a 2-year interval, corresponding to an
acceleration, cm s; (3) small
irregular variations are seen in the eclipse-timing variations (`ETVs')
detected over the same interval; (4) the orbital separation of the quadruple
system is probably in the range of 8-25 AU; and (5) the orbital planes of the
two binaries must be inclined with respect to each other by at least
25. In addition, we find that binary B is evolved, and the cooler and
currently less massive star has transferred much of its envelope to the
currently more massive star. We have also demonstrated that the system is
sufficiently bright that the eclipses can be followed using small ground-based
telescopes, and that this system may be profitably studied over the next decade
when the outer orbit of the quadruple is expected to manifest itself in the ETV
and/or RV curves.Comment: Accepted for publication in MNRA
Atmospheric Retrievals of the Young Giant Planet ROXs 42B b from Low- and High-Resolution Spectroscopy
Previous attempts have been made to characterize the atmospheres of directly
imaged planets at low-resolution (R10s-100s), but the presence of clouds
has often led to degeneracies in the retrieved atmospheric abundances with
cloud opacity and temperature structure that bias retrieved compositions. In
this study, we perform retrievals on the ultra-young ( 5 Myr)
directly imaged planet ROXs 42B b with both a downsampled low-resolution
-band spectrum from Gemini/NIFS and Keck/OSIRIS, and a high-resolution
-band spectrum from pre-upgrade Keck/NIRSPAO. Using the atmospheric
retrieval framework of petitRADTRANS, we analyze both data sets individually
and combined. We additionally fit for the stellar abundances and other physical
properties of the host stars, a young M spectral type binary, using the SPHINX
model grid. We find that the measured C/O, , and metallicity,
[Fe/H] = , for ROXs 42B b from our high-resolution spectrum agree
with that of its host stars within 1. The retrieved parameters from the
high-resolution spectrum are also independent of our choice of cloud model. In
contrast, the retrieved parameters from the low-resolution spectrum show strong
degeneracies between the clouds and the retrieved metallicity and temperature
structure. When we retrieve on both data sets together, we find that these
degeneracies are reduced but not eliminated, and the final results remain
highly sensitive to cloud modeling choices. We conclude that high-resolution
spectroscopy offers the most promising path for reliably determining
atmospheric compositions of directly imaged companions independent of their
cloud properties.Comment: Accepted to the Astronomical Journal, 25 pages, 12 figures, 3 table
Simulating the Multi-epoch Direct Detection Technique to Isolate the Thermal Emission of the Non-transiting Hot Jupiter HD187123b
We report the 6.5σ detection of water from the hot Jupiter HD187123b with a Keplerian orbital velocity K_p of 53 ± 13 km s⁻¹. This high-confidence detection is made using a multi-epoch, high-resolution, cross-correlation technique, and corresponds to a planetary mass of 1.4^(+0.5)_(−0.3) M_J and an orbital inclination of 21° ± 5°. The technique works by treating the planet/star system as a spectroscopic binary and obtaining high signal-to-noise, high-resolution observations at multiple points across the planet's orbit to constrain the system's binary dynamical motion. All together, seven epochs of Keck/NIRSPEC L-band observations were obtained, with five before the instrument upgrade and two after. Using high-resolution SCARLET planetary and PHOENIX stellar spectral models, we were able to drastically increase the confidence of the detection by running simulations that could reproduce, and thus remove, the nonrandom structured noise in the final likelihood space well. The ability to predict multi-epoch results will be extremely useful for furthering the technique. Here, we use these simulations to compare three different approaches to combining the cross correlations of high-resolution spectra and find that the Zucker log(L) approach is least affected by unwanted planet/star correlation for our HD187123 data set. Furthermore, we find that the same total signal-to-noise ratio (S/N) spread across an orbit in many, lower S/N epochs rather than fewer, higher S/N epochs could provide a more efficient detection. This work provides a necessary validation of multi-epoch simulations, which can be used to guide future observations and will be key to studying the atmospheres of farther separated, non-transiting exoplanets
Investigating Trends in Atmospheric Compositions of Cool Gas Giant Planets Using Spitzer Secondary Eclipses
We present new 3.6 and 4.5 μm secondary eclipse measurements for five cool (T 1000 K) transiting gas giant planets: HAT-P-15b, HAT-P-17b, HAT-P-18b, HAT-P-26b, and WASP-69b. We detect eclipses in at least one bandpass for all planets except HAT-P-15b. We confirm and refine the orbital eccentricity of HAT-P-17b, which is also the only planet in our sample with a known outer companion. We compare our measured eclipse depths in these two bands, which are sensitive to the relative abundances of methane versus carbon monoxide and carbon dioxide, respectively, to predictions from 1D atmosphere models for each planet. For planets with hydrogen-dominated atmospheres and equilibrium temperatures cooler than ~1000 K, this ratio should vary as a function of both atmospheric metallicity and the carbon-to-oxygen ratio. For HAT-P-26b, our observations are in good agreement with the low atmospheric metallicity inferred from transmission spectroscopy. We find that all four of the planets with detected eclipses are best matched by models with relatively efficient circulation of energy to the nightside. We see no evidence for a solar-system-like correlation between planet mass and atmospheric metallicity, but instead identify a potential (1.9σ) correlation between the inferred CH₄/(CO + CO₂) ratio and stellar metallicity. Our ability to characterize this potential trend is limited by the relatively large uncertainties in the stellar metallicity values. Our observations provide a first look at the brightness of these planets at wavelengths accessible to the James Webb Space Telescope, which will be able to resolve individual CH₄, CO, and CO₂ bands and provide much stronger constraints on their atmospheric compositions
- …