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Abstract

We report the 6.5σ detection of water from the hot Jupiter HD187123b with a Keplerian orbital velocity Kp

of 53±13 km s−1. This high-confidence detection is made using a multi-epoch, high-resolution, cross-
correlation technique, and corresponds to a planetary mass of -

+1.4 0.3
0.5 MJ and an orbital inclination of 21°±5°.

The technique works by treating the planet/star system as a spectroscopic binary and obtaining high signal-to-
noise, high-resolution observations at multiple points across the planet’s orbit to constrain the system’s binary
dynamical motion. All together, seven epochs of Keck/NIRSPEC L-band observations were obtained, with five
before the instrument upgrade and two after. Using high-resolution SCARLET planetary and PHOENIX stellar
spectral models, we were able to drastically increase the confidence of the detection by running simulations that
could reproduce, and thus remove, the nonrandom structured noise in the final likelihood space well. The
ability to predict multi-epoch results will be extremely useful for furthering the technique. Here, we use
these simulations to compare three different approaches to combining the cross correlations of high-resolution
spectra and find that the Zucker log(L) approach is least affected by unwanted planet/star correlation for
our HD187123 data set. Furthermore, we find that the same total signal-to-noise ratio (S/N) spread across
an orbit in many, lower S/N epochs rather than fewer, higher S/N epochs could provide a more efficient
detection. This work provides a necessary validation of multi-epoch simulations, which can be used to
guide future observations and will be key to studying the atmospheres of farther separated, non-transiting
exoplanets.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Radial velocity (1332); High resolution
spectroscopy (2096)

1. Introduction

To date, over 4000 extrasolar planets have been discovered
with a range of vastly different orbital and atmospheric
properties. The most detailed follow-up characterizations of
these planets have been provided by the transit technique.
While the transit technique can give invaluable insight into the
atmospheres of these planets (e.g., Madhusudhan et al. 2014), it
is restricted to systems with a very narrow range of orbital
inclinations that allow them to transit with respect to our line-
of-sight from Earth. While ∼10% of typical hot Jupiters around
sunlike stars can be expected to transit, as we move to habitable
zone planets around M stars and sunlike stars, the transit
probabilities drop to ∼9% and 0.5%, respectively. Direct
imaging has also provided information on the atmospheric
content and relative molecular abundances of planets at large
separation (e.g., Konopacky et al. 2013), but these techniques
are not yet sensitive to planets within ∼0 1 (e.g., Snellen et al.
2014; Schwarz et al. 2016), which excludes habitable zone
planets around even the closest M stars.

Recent work has developed high-resolution cross-correlation
(CC) techniques that aim to target the much larger sample of
non-transiting, yet close-in, planets by separating the stellar and
planetary signals by radial velocity rather than by flux
variation, as in the transit technique, or by spatial separation,
as in the direct imaging technique (e.g., Snellen et al. 2010;

Lockwood et al. 2014). These direct detection techniques work
by treating a star/planet system as a spectroscopic binary and
measuring the radial velocity signature of the planet. This
signature will have an opposite phase to the stellar radial
velocity curve (see Figure 1), and by combining its amplitude,
which we call Kp, the planetary Keplerian line-of-sight
velocity, with the stellar radial velocity amplitude K, we can
break the mass/inclination degeneracy left by the stellar radial
velocity technique and further characterize the planet’s
atmosphere (e.g., Brogi et al. 2012, 2013, 2014; Lockwood
et al. 2014; Piskorz et al. 2016, 2017; Birkby et al. 2017;
Piskorz et al. 2018). These techniques have been used to detect
the presence of H2O (e.g., Birkby et al. 2017), CO (e.g., Brogi
et al. 2012), TiO (Nugroho et al. 2017), HCN (e.g., Hawker
et al. 2018), and CH4 (Guilluy et al. 2019) in planetary
atmospheres, as well as winds (Snellen et al. 2010) and
planetary rotation rate (Brogi et al. 2016). They have been
applied using data from VLT/CRIRES (e.g., Snellen et al.
2010), Keck/NIRSPEC (e.g., Lockwood et al. 2014), ESO/
HARPS (e.g., Martins et al. 2015), CFHT/ESPaDOnS (e.g.,
Esteves et al. 2017), GIANO (e.g., Brogi et al. 2018), and
CARMENES (e.g., Alonso-Floriano et al. 2019) to study about
10 hot Jupiters.
There are two main methods that have been applied to

measure planetary Keplerian orbital velocities Kp: a single-night
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version and a multi-epoch version. The single-night version
(e.g., Snellen et al. 2010) observes the systems over a full night
(∼5–7 hr) when the planet is near superior or inferior
conjunction, where its line-of-sight velocity changes most
rapidly, and watches for the planetary lines to move across
detector pixels as the stellar and telluric lines remain stationary.
This technique can also be applied to multiple partial nights as
long as the planet lines move across the detector’s pixels in the
partial nights (e.g., HD 179949, Brogi et al. 2014). The single-
night method has provided several high-confidence detections of
planetary emission and molecular features, but requires the
planetary lines to move by tens of kilometers per second over a
∼5–7 hr night, and so is limited to close-in planets. The multi-
epoch method (e.g., Lockwood et al. 2014), rather than looking
for shifting planetary lines in a single night, observes at multiple
epochs around the planet’s orbit for ∼2–3 hr per epoch. These
times are chosen to be long enough to maximize the signal-to-
noise on the system and to allow for a principal component
analysis (PCA) telluric correction (as described in Section 2.2)
but short enough that the planetary lines stay fixed, and so are
not removed by the telluric correction. Because the multi-epoch
technique does not require the planetary lines to move in a short
time period, it is applicable to the future study of planets at larger
orbital radii, including those in habitable zones. It could study
planets in M dwarf habitable zones out to those in K dwarf and
solar habitable zones that are too far out for the single-night
method but too close in for direct imaging techniques with
current adaptive optics capabilities.

As such, improvements on the multi-epoch technique are
timely and critical. Here, we apply the multi-epoch method to
the hot Jupiter HD187123b, using simulations to understand
the limiting factors in our detection. As one of only two known
systems with a hot Jupiter (gas giant with <P 10 days and

>M i Msin 0.1 Jup) and a very-long-period planet ( >P 5 yr) in
a well-determined orbit (Feng et al. 2015), this system could
hold valuable clues to understanding planetary migration.
The system is orbiting the sunlike G2V star HD187123A.
HD187123b, the hot Jupiter, has a minimum mass of
0.51 MJup and an orbital period of 3.10 days. HD187123c is
the Jupiter analog in the system. It is on an eccentric
(e=0.280) orbit with a period of 9.1 yr and a minimum mass
of 1.8MJup (Feng et al. 2015). HD187123b was first discovered
by Butler et al. (1998) and the most up-to-date Keck/HIRES
radial velocity data set was analyzed by Feng et al. (2015;

see Figure 1). The relevant properties of HD187134A and
HD187123b are given in Table 1.
In Section 2, we describe the Keck/NIRSPEC data sets and

their reduction. In Section 3, we describe how we simulate
multi-epoch data. We use our simulation framework to measure
the Kp of HD187123b along with its mass and inclination in
Section 4. We consider the trade-off between signal-to-noise
ratio (S/N) per epoch and orbital coverage in Section 5, and
discuss and conclude in Sections 6 and 7, respectively.

2. NIRSPEC Observations and Data Reduction

2.1. Observations

We observed the HD187123 system for seven nights in the
L band using Near InfraRed SPECtrometer (NIRSPEC; McLean
et al. 1998) at the Keck Observatory. Two of the nights were
obtained with the upgraded NIRSPEC instrument (Martin et al.
2018), while the rest were taken with the original. We used an
ABBA nodding pattern and obtained spectral resolutions of
∼25,000 pre-upgrade with the 0 432×24″ slit setup and
∼41,000 in L post-upgrade with the 0 288×24″ slit setup.
Before the instrument upgrade, we used echelle settings to
obtain orders typically covering 3.4022-3.4550, 3.2549–3.3055,
3.1200–3.1685, and 2.9959–3.0424 μm. Our post-upgrade L-band
settings covered 3.6292–3.6965, 3.4630–3.5292, 3.3131–3.3764,
3.1758–3.2364, 3.0495–3.1075, and 2.9330–2.9886 μm. Note that
the band settings before and after the upgrade do not overlap.
Table 2 gives the details of these observations.

2.2. NIRSPEC Data Reduction

We reduce our NIRSPEC data using the Python pipeline
described by Piskorz et al. (2016), adapting the pipeline where
necessary to reduce the two nights of data from the upgraded

Figure 1. Model showing the spectroscopic binary nature of the HD187123
system. The red curve and points show the stellar radial velocity model and
measurements (Feng et al. 2015), respectively, and the black curve shows the
planetary velocity signature with the colored circles showing the planet’s phase
at each of our observations with vsec given by our measured Kp of 53 km s−1.

Table 1
HD187123 System Properties

Property Value References

HD187123A
Mass, Må 1.037±0.025 M☉ (1)
Radius, Rå 1.143± R0.039 ☉ (2)
Effective temperature, Teff 5815±44 K (3)
Metallicity, Fe H[ ] 0.121±0.30 (3)
Surface gravity, glog 4.359 ± 0.060 (3)
Rotational velocity, v isin 2.15±0.50 km s−1 (3)
Systemic velocity, vsys -16.965±0.0503 km s−1 (4)
K band magnitude, Kmag 6.337 (5)
HD187123b
Velocity semi-amplitude, K 69.04 -

+
0.43
0.42 m s−1 (6)

Line-of-sight orbital velocity, KP 53±13 km s−1 (6)
Minimum mass, M isinp 0.5077 -

+
0.0088
0.0087 MJ (6)

Mass, Mp -
+1.4 0.3

0.5 MJ (6)
Inclination, i   21 5 (6)
Semimajor axis, a 0.04209±0.00034 au (6)
Period, P 3.0965885 -

+
0.0000052
0.0000051 days (6)

Eccentricity, e 0.0076 -
+

0.0049
0.0060 (6)

Time of periastron, Tperi 2454342.87±0.30 JD (2)
Argument of periastron, ω 360°±200° (2)
Time of inferior conjunction, To -

+2454343.6765 0.0074
0.0064 JD (6)

Note. (1) Takeda et al. (2007), (2) Feng et al. (2015), (3) Valenti & Fischer
(2005), (4) Soubiran et al. (2013), (5) Cutri et al. (2003), (6) this work.
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NIRSPEC instrument. The two-dimensional images are flat-
fielded and dark subtracted according to Boogert et al. (2002).
The extracted one-dimensional (1D) spectra are then wave-
length-calibrated with a fourth-order polynomial fit according
to model telluric lines.

After the 1D spectra are extracted and wavelength-
calibrated, a model-guided PCA is used to remove time-
variable components from the data. We use the ESO tool
Molecfit (Kausch et al. 2014) to fit the initial telluric model to
each night of data. In addition to fitting the telluric abundances
and continuum, Molecfit uses a Gaussian fit to determine the
resolution of the data. It reports the FWHM of the Gaussian
kernel, which we later use to broaden the stellar and planetary
templates for CC. After the best-fit model is removed from each
nod in the data set, PCA is used to identify the dominant
sources of variance, following the technique developed in
Piskorz et al. (2016). Typically, the majority of the variance is
accounted for in the first few principal components. These
components typically contain variance due to changes in
telluric abundances, in airmass, in the continuum, and in
instrument response. After these first few components are
removed, a clean stellar/planetary spectrum is left behind.
Figure 2 shows the third order of the data from 2017 September
7 with its initial telluric fit, the first three principal components,
and the clean stellar+planetary spectrum. We specifically limit
our observation times so that the planetary signal does not
move across pixels in the course of a single-night observation,
to ensure that PCA will not remove the planetary signal. For the
rest of this work, we use spectra with three components and
five fringes removed. We also mask out pixels in which telluric
absorption features are stronger than 25%. This results in
between 9% and 68% of each order being lost. Panel (E) of
Figure 2 shows an order from 2017 September 7 with these
regions masked out.

3. Simulating NIRSPEC Observations

After telluric correction, we use a two-dimensional cross-
correlation (2D CC) technique to detect the planetary velocity
each night. Because of the difficulty in detecting the planetary
velocity in only one epoch, due to the planet’s low contrast
relative to the star, the correlations from the different nights are
combined. This is what allows us to detect the true planetary
line-of-sight Keplerian orbital velocity. In order to run the CC,
we need high-resolution, high-fidelity stellar and planetary

spectral models. We also need a reliable method of combining
the correlations from different nights. Before describing the
analysis of our HD187123b data, we first describe the spectral
models used for the CC in Section 3.1 and describe how we
simulate the data at each epoch to help determine the true
planetary velocity in Section 3.2. We describe the math behind
the three different approaches to combining CCs in the
Appendix.

3.1. High-resolution Spectral Models

We use an R=250,000 high-resolution thermal emission
model of HD187123b generated using the SCARLET framework
(Benneke 2015). The model computes both the equilibrium

Table 2
NIRSPEC Observations of HD187123

Date Julian Datea Shifted Mean Barycentric Velocity Integration Time S NL
c

(–200,000 days) Anomaly M′a b vbary (km s−1) (minutes)

2011 May 21 55703.105 0.01 16.16 56 1724
2011 Aug 10 55783.829 0.08 −2.48 108 1713
2013 Oct 27 56592.759 0.31 −17.44 44 1283
2013 Oct 29 56594.738 0.95 −17.50 80 2050
2017 Sep 7 58003.774 0.98 −10.15 96 2409
2019 Apr 3d 58577.140 0.14 15.49 84 2298
2019 Apr 8d 58582.131 0.75 16.09 64 3417

Notes.
a Julian date and shifted mean anomaly refer to the middle of the observing sequence.
b We report a shifted mean anomaly (M′) that is defined from inferior conjunction, rather than from the pericenter, and runs from 0 to 1.
c S/NL is calculated at 3.0 μm. Each S/N calculation is for a single channel (i.e., resolution element) for the whole observation.
d These observations were taken with the upgraded NIRSPEC instrument.

Figure 2. Demonstration of PCA telluric removal approach. (A) Raw spectrum
of HD187123 from 2017 September 7 with the initial telluric model fit shown
in green. (B)–(D) The first three principal components identified in arbitrary
units. These describe changes in the airmass, molecular abundances in the
Earth’s atmosphere, and plate scale over the course of the observation. (E)
Same as (A) but without the initial telluric model fit and the first five principal
components. A stellar model is overplotted in orange.

3

The Astronomical Journal, 160:1 (13pp), 2020 July Buzard et al.



chemistry and temperature structure of HD187123b assuming a
solar elemental composition, perfect heat redistribution, and an
internal heat flux of 75 K. The spectrum is calculated assuming
an atmosphere with a metallicity equal to that of the Sun and a
C/O ratio of 0.54. The default temperature structure used in this
work is inverted due to the inclusion of short wavelength
absorbers TiO and VO. The SCARLET model framework
includes molecular opacities of H2O, CH4, HCN, CO, CO2, NH3,
and TiO from the ExoMol database (Tennyson & Yurchenko
2012), molecular opacities of O2, O3, OH, C2H2, C2H4, C2H6,
H2O2, and HO2 (HITRAN database by Rothman et al. 2009),
alkali metal absorptions (VALD database by Piskunov et al.
1995), H2 broadening (Burrows & Volobuyev 2003), and
collision-induced broadening from H2/H2 and H2/He collisions
(Borysow 2002). We broaden the planetary model with the
instrument profiles fit to the data. The L-band portion of
the spectral model, covering our data, is dominated by water
emission features.

We use a stellar model obtained by interpolating PHOENIX
models (Husser et al. 2013) to the effective temperature Teff ,
surface gravity glog( ), and metallicity [Fe/H] values for
HD187123A listed in Table 1. Instrumental broadening is
ultimately determined by the size of the instrument’s pixels.
The original L-band NIRSPEC pixels covered ∼5 km s−1, and
the upgraded L-band pixels cover ∼3.1 km s−1. Because
HD187123A is a slow rotator, with a rotational velocity of only
2.15 km s−1, instrumental broadening will dominate over
rotational broadening and, as such, we broaden the stellar
model with only the kernels determined in Section 2.2.

3.2. Simulating Multi-epoch Data

In this work, we simulate the multi-epoch data to better
understand the strengths and weaknesses of the technique. To do
this, we start with the high-resolution SCARLET planetary and
PHOENIX stellar models described in Section 3.1. We scale each
model by its surface area, i.e., multiply it by its radius squared.
The stellar radius is well measured (see Table 1), but because it is
a non-transiting system, the planetary radius is not. We assume a
radius of 1.0 RJ. With this planetary radius, the simulated data has
an average spectroscopic planet/star contrast of ´ -1.2 10 3 in the
L band.

After the stellar and planetary models are appropriately
scaled, they are shifted to the nightly velocities. The stellar
spectrum is shifted by

= -v v v 1pri sys bary ( )

where vsys is the systemic radial velocity, and vbary is the
nightly barycentric velocity in the direction of the system. The
planetary spectrum is shifted by

p
= - +v K

P
T T vsin

2
2p osec obs pri⎜ ⎟⎛

⎝
⎞
⎠( ( )

where Kp is the line-of-sight Keplerian velocity of the planet,
P is the orbital period, To is the time of inferior conjunction,
and Tobs is the midpoint of the observation in Julian date.
Unless otherwise stated, P, To, and vsys are set as the values in
Table 1. The P and To values reported were measured using
RadVel (Fulton et al. 2018) to refit the radial velocity data
from Feng et al. (2015). We measure equivalent values of P, e,
and K, and using the same stellar mass estimate from Takeda
et al. (2007), M isinp and a to those found in Feng et al. (2015).

However, by refitting the data, we can directly measure the
time of inferior conjunction, To, and its uncertainty. The
uncertainty we measure on To is only ∼0.2% of the orbital
period, meaning that we have a very good sense of where the
planet is on its orbit during each epoch. While this would
not make much of a difference to the detection ability of the
simulations, it will be important for detecting the planet in the
real data (described in Section 4.2). The Tobs and vbary values
are from Table 2. Kp is a free parameter.
Next, the stellar model is linearly interpolated onto the

planetary model wavelength axis, and the two models are
added. The stellar continuum is then removed using a third-
order polynomial fit to the combined spectrum in wavenumber
space from 2.8 to 4 μm. The stellar spectral template used to
cross correlate the data (and simulated data) is continuum
normalized in the same way (Section 4.1).
The spectra are then broadened according to the instrument

profiles fit to the data and interpolated onto the wavelength
axes for each of the orders and nights. The same pixels that are
clipped from the data (described in Section 2.2) are clipped
from these simulated data as well. Lastly, random Gaussian
noise is added to the simulated data at the level measured from
the real data and reported in Table 2.
These simulations account for sections of the data that have

to be clipped, but assume that the PCA routine effectively
removes all residual telluric structure from the data.

4. NIRSPEC Data Analysis and Results

We use 2D CCs to determine the stellar and planetary velocities
in each epoch of data. While the stellar velocities are readily
apparent from single epochs, we must combine CCs from multiple
epochs to detect the planetary velocity. CCs can be combined as
log likelihoods. Throughout this paper, we will call the process of
converting CCs to log likelihoods “CC-to-log(L)”. Zucker (2003)
presented an approach to converting CCs into log likelihoods that
can be applied in two ways, which we will call the Zucker log(L)
and Zucker maximum likelihood (ML) approaches. Brogi & Line
(2019) recently presented a new CC-to-log(L) approach. The math
of these three approaches is described in the Appendix. We use
each of these three approaches to combine the seven epochs of
HD187123 data and compare the results each gives.
Now that we have presented the stellar and planetary spectral

models and introduced the different CC-to-log(L) approaches,
we describe our analysis of the HD187123b data.

4.1. Two-dimensional CC

We measure the stellar and planetary velocities using the 2D
CC technique (Equation (A5)) from Zucker & Mazeh (1994)
and the stellar and planetary spectral models described in
Section 3.1. In each night of data, we detect the star’s velocity
as expected (see panel (A) of Figure 3). Panels (B)–(H) of
Figure 3 show the log likelihoods from each of the nights
combined using each of the three CC-to-log(L) approaches:
Zucker log(L) (blue), Zucker ML (green), and Brogi & Line
(maroon). The log likelihoods are normalized so that they fit on
the same scale, but the relative heights of the log likelihoods
between the nights for each CC-to-log(L) approach are
maintained. The Zucker log(L) and Zucker ML log likelihoods
have the same functional shapes, but the different nights are
weighted differently. In each panel, the vertical dashed red
line represents the velocity of the star during that epoch, which
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would correspond to the planetary velocity if the system were
face-on. The white region, which illustrates the range of
possible planetary velocities each night, begins there and
extends until it reaches the maximum orbital velocity (given by
pa P2 ), which would represent an edge-on system. The
planet’s mass and inclination will determine where the peak
will be within the white region.

Panels (G) and (H) are from the NIRSPEC2 data. The
increased resolution of the upgraded instrument can easily be

seen in the more resolved structure in these panels as compared
to panels (B)–(F).
The sizes of the white regions also illustrate that some

epochs have better constraining power than others. When the
planet is near inferior or superior conjunction (M∼0, 0.5), as
on 2011 May 21, the nightly planetary velocity (vsec) will be
largely independent of Kp. When the planet is near quadrature
(M∼0.25, 0.75), however, as on 2019 April 8, the nightly
planetary velocity changes significantly as a function of Kp.
Thus, quadrature epochs are more useful for constraining Kp

than are those near conjuncture. We note that the opposite is
true for the single-night technique. While the multi-epoch
technique is most sensitive to epochs with the largest separation
between the planetary and stellar velocities (i.e., quadrature),
the single-night technique is most sensitive to orbital positions
that give access to the largest change in planetary velocity over
a short time period (i.e., near superior/inferior conjunction).

4.2. Planet Mass and Orbital Solution

Because the planetary velocities cannot be reliably measured
from single epochs, we combine the seven epochs to measure
the Kp of HD187123. As described in the Appendix, the log
likelihoods from different epochs are combined by converting
them from vsec to Kp space using Equation (2) and then
summing them.
Panel (A) of Figure 4 shows the combined log likelihoods

using the three different CC-to-log(L) methods. The three
methods each produce a significant peak between around 45
and 60 km s−1. To determine the correct Keplerian velocity, we
simulate the effect of a 1.0 RJ HD187123b-like planet at 44 and
57 km s−1 (shown in panels (B) and (C) of Figure 4). We see
that while both CC-to-log(L) approaches can uniquely detect
the planet at 44 km s−1, when the planet is shifted to 57 km s−1,
a side peak appears around 44 km s−1. In the Brogi & Line
approach, this side peak is stronger than the real peak at
57 km s−1, while in both Zucker approaches, the 57 km s−1

peak is broadened. We see a similar pattern when we compare
these results to the log likelihoods derived from the data (panel
(A)). The Zucker log(L) approach shows two approximately
equal height peaks at ∼40 and ∼57 km s−1 while the Brogi &
Line approach has a dominant peak at 44 km s−1 with a much
weaker side peak at ∼63 km s−1.
Both sets of simulations also show a bump at around

∼135 km s−1, which is also seen in the data. The Zucker (2003)
log(L) and Brogi & Line (2019) log(L) approaches do give rise
to a small peak at about 100 km s−1 in the data that does not
appear in the simulations. This side peak does not appear in
the Zucker (2003) ML approach on the data, however. We
therefore can rule out the peak at ∼100 km s−1 as the true
planetary velocity.
One difference between the simulated results and the data

results is the magnitude of the log likelihood variation. We
show scaled log likelihood curves in Figure 4 so that the curves
can be plotted on the same axes. In general, the variation in the
simulated log likelihoods from −150 to 150 km s−1 is~ ´5 the
variation in the data log likelihood curves. We have found that
varying the spectroscopic contrast α, which is a function of
the planetary radius, used to run the 2D CC (described in the
Appendix), changes the magnitude, but not the shape, of
the resulting log likelihood curves. Therefore, the magnitude

Figure 3. Log likelihood functions for all seven epochs of NIRSPEC data on
HD187123. (A) The stellar correlation from 2019 April 8. (B)–(H) The
planetary likelihoods for each of the epochs. The colors represent different CC-
to-log(L) approaches, with Zucker log(L) in blue, Zucker ML in green, and
Brogi & Line in maroon. The curves are normalized, so the y-magnitude is
arbitrary, but the relative heights between epochs combined the same way are
maintained. The white regions show the allowable velocities, defined between
face-on (red dashed line) and edge-on configurations, for each epoch given the
known orbital position. The planetary mass/inclination of the system would
determine where the planet would fall within the allowed regions.
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difference is likely due to the uncertainty in the planetary radius
and lapse rate. We also note that the simulations seem to show
a larger rise toward 0 km s−1 than is seen in the data. This is
likely from the correlation between the stellar component of the
simulated data and the star model template that leaked into
the second dimension of the correlation. In the simulated data,
we use the same stellar model spectrum to generate the
simulated data and to correlate it. In the real data on the other
hand, the real stellar spectrum could be slightly different from
the stellar spectral model used to correlate it. For instance, the
stellar spectral model does not consider any starspots that could
introduce a lower temperature component to the real stellar
spectrum. The better match between the stellar template and the
stellar component in the simulated data than in the real data
would explain why the peak at 0 km s−1 is stronger in the
simulated cases than in the real case.

There are several factors in addition to a lack of modeled
starspots that could be leading to a discrepancy between our
data results and our modeled results. One stems from
inaccuracies in the molecular opacities in both our planetary
and stellar spectral models. The ExoMol database uses the
MARVEL (Furtenbacher et al. 2007) procedure to correct
theoretical calculations of transition frequencies and line shapes
using laboratory experiments. The MARVEL framework has

only been applied to a few molecules, however, including H2O
and TiO, but is notably missing CH4 and CO2.

7 The molecules
not corrected by MARVEL have errors in transition frequen-
cies around 0.1 cm−1, which is around the resolution element
of NIRSPEC. These errors, which are accounted for in the
simulated results since the same planetary spectral model is
used to generate the simulated data as to correlate it, are not
accounted for in the real data and so could cause discrepancies
between the two results. Inaccuracies in the stellar line lists
could produce similar discrepancies.
An additional source of discrepancy between the simulated

and real results could be from our use of the literature value of
vsys to combine the data from different epochs. Again, the same
systemic (and barycentric) velocities are used to simulate the
data as to CC it. However, there are several sources (e.g.,
rotation, winds; Zhang et al. 2017) that are known to shift the
real planetary emission a few kilometers per second from the
systemic velocity measured from star. We choose to only
consider the planetary cut along the known stellar velocity,
though, and so this could account for some discrepancy
between the data and simulated results.
We consider the peak at ∼57 km s−1 to be the true planetary

detection. To test if we could determine where the extra
correlation peaks, notably the one at 44 km s−1, come from, we
ran additional simulations with no planet present in the
simulated data. These are set up the same way as the
simulations shown in panels (B) and (C) of Figure 4, but this
time, there is no planet model added in to the simulated data.
We then run the 2D CC, as above, and show the results of the
combined planetary log likelihoods in Figure 4(D). Because
there is no planetary signal in the simulated data, the second
dimension of the CC, which involves correlating the data with a
planetary model, shows the correlation between the stellar lines
in the data and the planetary model. Figure 4(D) shows that this
unintended star/planet correlation gives rise to both the peak at
44 km s−1 and the bump at ∼135 km s−1. We also see from the
flatness of the green curve that the Zucker ML approach is least
affected by planet/star correlation. These results support our
conclusion that the true Kp is at 57 km s−1 rather than at
44 km s−1.
In general, we find that the two Zucker methods do not have

as large peaks at incorrect values of Kp as the Brogi & Line
method does for this data set. Figure 3 shows the log
likelihoods computed for each epoch from each of the three
combination approaches. We note that the Brogi & Line
method gives more weighting to the two NIRSPEC2 epochs,
(G) and (H), than to the five NIRSPEC1 epochs, (B)–(F), while
the Zucker log(L) approach gives more even weighting to all
seven epochs. The Brogi & Line combinations of the two
NIRSPEC2 epochs each show a peak that corresponds to a Kp

of 44 km s−1 (just next to the black dashed lines in the direction
of the red dashed lines in panels (G) and (H) of Figure 3),
which does not appear in the five NIRSPEC1 epochs. Since the
NIRSPEC1 and NIRSPEC2 L-band settings cover slightly
different wavelength regions (see Section 2.1), this extraneous
peak could be the result of correlation between stellar and
planetary lines present in the NIRSPEC2 wavelength regions
that are not in the NIRSPEC1 regions. Because the Brogi &
Line approach gives more weight to these epochs, the
extraneous peak is not diluted by the NIRSPEC1 epochs as

Figure 4. Normalized log likelihoods as a function of Keplerian orbital
velocity Kp. The Zucker log(L), Zucker ML, and Brogi & Line CC-to-log(L)
combination techniques are shown in blue, green, and maroon, respectively.
(A) The results of the data. (B) and (C) The results of the system simulations
with values of Kp of 44 km s−1 and 57 km s−1, respectively. These simulations
both consider a 1 RJup planet. The results of the simulations in panel (C) match
the data results in panel (A) much better than do the simulation results in panel
(B). (D) Similar to panels (B) and (C) but with no injected planetary signal. All
structure represents unwanted correlation between stellar model and planetary
model spectral lines.

7 http://kkrk.chem.elte.hu/Marvelonline/molecules.php
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much as it is in the Zucker log(L) combination approach. On
the other hand, the Zucker ML approach gives more weight to
the NIRSPEC1 epochs than the NIRSPEC2 epochs, so does not
benefit from the improved resolution of the NIRSPEC2 data in
the same way that the Zucker log(L) results do.

This suggests that the Zucker log(L) approach is better suited
for heterogeneous data sets than are either the Brogi & Line or
the Zucker ML methods. To test this hypothesis, we simulate
the seven data epochs but as a homogeneous data set, i.e., with
all NIRSPEC2 epochs rather than with five NIRSPEC1 and two
NIRSPEC2 epochs. The NIRSPEC version determines the
number of pixels per order, the number of orders, the
instrument resolution, and the exact wavelength regions
covered. We leave the S/N per epoch, planetary orbital phases,
and barycentric velocities the same as in the real data set.
Figure 5 shows that, with a homogeneous data set, the two
Zucker methods and the Brogi & Line approach give much
more equivalent results than they do with a heterogeneous data
set, though the Brogi & Line method still shows a side peak at
∼44 km s−1 that is not in the Zucker results. In other words, the
Brogi & Line approach is more sensitive to unwanted star/
planet correlation than the Zucker approaches when applied to
homogeneous data sets, but this effect is exaggerated with
heterogeneous data. The Brogi & Line log(L) function contains
the variance of the data, which suggests that it should account
for the variable noise across orders and epochs. Because of this,
it may be surprising that it seems to perform worse on the
heterogeneous data set than does the Zucker log(L) method.
However, the makeup of each epoch (e.g., the specific
wavelength range covered, the instrument profile, the orbital
position, the barycentric velocity) could affect the level of per-
epoch structured noise (e.g., planet/star correlation), to be
reported on in future work. While the Brogi & Line formalism
accounts for differing levels of random noise between the epochs,
it does not account for differing levels of structured, nonrandom
noise. This could explain why it may not be performing as well
on the heterogeneous data set as we may have expected it to.

Because the Zucker log(L) method seems to produce the best
results for our heterogeneous data set, we use it moving
forward. We do, however, stress that further simulations of
both different systems and inclination angles and heteroge-
neous data sets (different wavelength regions, different
instruments) are needed to assess the robustness of log
likelihood combination approaches.

To further investigate the validity of the peak at 57 km s−1,
we fit the simulations (as in panels (B) and (C) of Figure 4) to
the data and report the standard likelihood function
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where Mk is the simulated pixels, Dk is the data result pixels,
and sk is the uncertainty on the data results by pixel. To
estimate our uncertainty on Kp, we use jackknife sampling.
Jackknife sampling involves sequentially removing one epoch
of data from the combination. The error is then equal to the

-N 1 ×standard deviation of the N different combinations
(where N is the total number of epochs). The jackknife error
bars are shown on the Zucker log(L) curve in Figure 6. As
described in Piskorz et al. (2016), jackknife sampling is only
one way of estimating error, which often actually overestimates
the error because high variance between jackknife samples
drives a high standard deviation, which produces large error
intervals. Before fitting the simulations to the data, we
normalize the simulated results by the ratio of the standard
deviation of the data results and the standard deviation of the
simulated results to account for the magnitude difference
resulting from the uncertainty in planetary radius and lapse rate.
A more sophisticated way of treating structured noise, for
instance, a Gaussian processes approach, is not yet computa-
tionally feasible for such high-resolution data sets.
We test simulations from 0 to 150 km s−1 in steps of

5 km s−1. The normalized likelihood is shown in Figure 7.
Fitting the simulations to the results allows us to remove
unintended structure in the likelihood surface. In comparing the
data result, shown in light blue in Figure 6, to the likelihood
result in Figure 7, we can see how much of the unwanted
structure, including that near 0 and between ∼90 and
150 km s−1, is depleted. This indicates that the extraneous
structure is not random, and can be removed by simulating
multi-epoch data sets.
To determine the uncertainty on Kp, we fit Gaussian

functions both to the results of the raw data and to the results
of the simulation fit to the data results. From the raw data
(shown in light blue in Figure 6), we measure a Kp of
57±15 km s−1 from the Zucker (2003) log(L) approach, while
the simulation fit (Figure 7) yields a Kp of 53±13 km s−1.
We determine the significance of the detection from the

likelihood fit between the simulations and the data results, i.e.,
the function shown in Figure 7, since real structure is
minimized here, and we can assume the variation at the
baseline is from unstructured noise. We determine the noise
level from the standard deviation of points beyond 2σ from the
peak. This gives a significance of 6.5σ at 53 km s−1.
Previous multi-epoch detection works (e.g., Piskorz et al.

2018) have reported significance by comparing the likelihood
of a Gaussian fit (representing a detection) versus a linear fit
(representing a non-detection) to the peak. This method has
given significances of hot Jupiter detections in the range of
3–4σ. This method was used previously because it was clear
that the structure at off-peak velocities was not random and so
an accurate noise level could not be obtained from it. Applying
this technique to the raw data result, we measure a 3.6σ
detection from the Zucker log(L) approach. However, we were
able to reduce the level of nonrandom off-peak structure, which

Figure 5. Similar to Figure 4(C) but for seven NIRSPEC2 epochs rather than
five NIRSPEC1 and two NIRSPEC2 epochs. The three combination
approaches give much more similar results on this homogeneous data set than
on the heterogeneous data set shown in Figure 4(C). This suggests that while
all of the methods can detect the true peak in a homogeneous data set, the
Zucker log(L) approach (blue) performs better on heterogeneous data sets, like
our HD187123b one.
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allows us to determine the significance in a more straightfor-
ward way. While the two values of significance are not directly
comparable, we do find a large increase in detection confidence
by using simulations to correct out real off-peak structure.

This Kp of 53±13 km s−1 corresponds to a planetary mass of

-
+ M1.4 0.3

0.5
J and an orbital inclination of 21°±5° at 6.5σ. We

correlate the data with planetary models containing the spectral
lines of only one molecule (H2O, CO, or CH4) and find that the
log(L) surface is completely made from correlation with water
lines. Therefore, we also report the 6.5σ detection of water in the
atmosphere of HD187123b. The log(L) curves produced from
CO and CH4 spectral models do not show peaks at the true Kp.
This is not surprising, however, because CO does not have any
spectral lines in the L-band wavelengths our data cover, and
equilibrium chemistry predicts CO as the major carbon-bearing
species in hot Jupiter atmospheres rather than CH4.

5. Signal-to-noise versus Orbital Coverage

5.1. Signal-to-noise per Epoch

The simulations used to fit the data (the results of which are
shown in Figure 7) elucidated the true planetary peak by
reducing off-peak structure from correlation between the
planetary and stellar spectral models. Though we could reduce
this structured noise to a large extent, the detection significance
is far from shot-noise limited. Since this is the case, we
investigate how the planet detectability would change with
lower S/N epochs. To do so, we run simulations with the same
parameters in the HD187123b data set described in Table 2, but
decreasing S/N per epoch. To simplify these simulations, we
spread the total S/N evenly across the seven epochs, so each
epoch has an S/N of 2220 to make up the total S/N of 5874
that we obtained in the data. The even distribution of S/N
across epochs does not change the results much from the S/N
distribution measured in the data, as can be seen by the orange
(data-like S/N distribution) and black (even S/N distribution)
curves in Figure 8. The rest of the curves in the figure show
decreasing S/N per epoch. Interestingly, we see that the S/N
per epoch can be degraded from 2220 per pixel to 1500 without
any noticeable change in the height of the likelihood peak.
Furthermore, the off-peak structure also remains the same until
the S/N has degraded beyond an S/N of ∼500, confirming that
this structure is real and not the result of random noise.
To further test these results, we chop the data into lower S/N

epochs and test whether we see the same trend. By reducing the
number of nods per epoch, we diminish the data set to seven
epochs with average S/Ns per epoch of 1490 and 530 as well
as the full average 2220 per epoch. We run PCA to remove
telluric contamination after chopping the data, to approximate
the results if we had truly only obtained the seven 1490 or
530 S/N epochs. In Figure 9, the data set with 1490 S/N
epochs produces a very similar shape to the full 2220 S/N
epochs. The green curve, representing an average S/N of
only 530 per epoch, also shows similar off-peak structure, for
instance, around ∼100 and ∼140 km s−1, but the real peak is
much diminished here. These results agree with those found
using simulations, as seen in Figure 8. These results, in both the

Figure 6. Normalized log likelihood as a function of Keplerian orbital velocity Kp

for the HD187123b data using the Zucker (2003) log(L) CC-to-log(L) approach.
The normalized log likelihoods plotted here and in subsequent figures are
normalized by subtracting the mean of the log(L) from −150 to 150 km s−1 and
adding 1. The curve shows the data results, with the shaded region indicating the
uncertainty ranges resulting from a jackknife analysis of the data.

Figure 7. Normalized log likelihood as a function of Keplerian orbital velocity
Kp between the data results and the simulated results using the Zucker log(L)
cross-correlation combination approach.

Figure 8. Simulations showing how the Kp detection decreases with decreasing
S/N per epoch. The S/N is evenly distributed across the seven epochs. The
2220 S/N per epoch simulation has the same total S/N as the data results
(shown in orange) that have an uneven S/N distribution, as described in
Table 2. The similarity between the black, 2220 S/N per epoch curve and the
orange curve demonstrates that the different distributions of the total S/N do
not have a large effect on the structure of the final results.
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simulations and the data, suggest that indeed, our detection is
not shot-noise limited, and shorter epochs could be as effective
for detecting planetary emission.

One feature seen in the data that is not seen in the simulations
is the increase toward 0 km s−1 in the average S/N 530 epoch
case. This set only considered two nods per epoch, which is the
minimum possible to run a PCA-based telluric correction.
Without a large offset in time between the two nods, there
would not be as much change in the tellurics (airmass,
abundances, plate scale, etc.), meaning that PCA could not
remove the telluric contamination as effectively as it could in the
higher S/N, more nod cases. The increase toward 0 km s−1 in the
green curve is likely from correlation between the planetary
spectral model and telluric contamination in the data. This sets a
limit on how short the exposure time per epoch can be as long as
a PCA-based approach is used to remove telluric contamination.

5.2. Orbital Coverage

We have seen that currently our detection confidence is
limited by structured noise resulting from the correlation
between stellar and planetary spectral models. Because we are
not in the shot-noise limited case, and could achieve similar
detections with lower S/N epochs, we test whether there is a
more efficient way of using the full S/N that could help to
remove the off-peak structured noise.

To test how we can reduce this structure, we run a simulation
with the same total S/N as we obtained in the seven data epochs,
but instead we spread that S/N evenly across 20 epochs. These 20
epochs are evenly spaced across the orbit, with primary velocities
evenly spaced between the maximum ( -vsys min(vbary)) and
minimum ( -vsys max(vbary)). They have an S/N of 1313 per epoch
as opposed to the average 2220 per epoch in the data. We use the
NIRSPEC2 wavelength coverage and resolution to create the 20
epochs.

The results of these simulations are shown in Figure 10. The
light blue curve represents the data-like simulations, the dark blue
curve represents the data-like simulations, but with the wavelength
coverage and resolution of NIRSPEC2, and the black curve shows
the results of the 20 epoch simulations. Clearly, the 20 epochs
result in a much stronger detection than do the seven epochs

(whether as observed or with all NIRSPEC2 epochs), even with
the same total S/N. More epochs give us access to different
wavelength shifts between both (1) the planet and the star and (2)
the planet and the Earth’s atmosphere, thus significantly reducing
the correlation between the planet and star spectral models. It also
reduces the amount of the planetary spectrum that is lost to
saturated tellurics, because wavelengths that are lost to saturated
tellurics will vary as the planet moves around its orbit, and its
spectrum is Doppler shifted relative to the stationary telluric lines.
These simulations suggest that it would be more effective to
spread the same total S/N over many epochs across the orbit
rather than to obtain just a few isolated higher S/N epochs.

6. Discussion

The multi-epoch technique is a promising method for
studying hot Jupiters and, in the future, cooler, farther
separated exoplanets, including those in habitable zones. It
can access a much wider sample of planets than the transit
technique can, and does not require the quickly changing line-
of-sight planetary velocity of the single-night technique, or the
spatial separation of direct imaging programs. Multi-epoch
detections are currently limited by structured noise arising from
the correlation between the planetary models and the stellar
component of the data. In this work, we investigate several
ways of trying to reduce this unwanted structure.
The multi-epoch technique falls under the category of high-

resolution CC techniques that must combine information from
CCs of different segments of data. Zucker (2003) and Brogi &
Line (2019) each presented ways to convert CCs to log
likelihoods so that they can be combined. We find that, for this
heterogeneous data set, the Brogi & Line (2019) version gives
more weight to the unwanted planet/star correlation at
∼44 km s−1 than do either of the two Zucker (2003) versions.
This suggests that the Zucker (2003) combination method is
better suited than the Brogi & Line (2019) for the 2D CC used

Figure 9. Normalized log likelihood as a function of Kp showing how
chopping the data into lower S/N epochs affects the detection. The purple
curve shows the results of the data with its full S/N per epoch, and the teal and
green curves show the results when the data is chopped up such that there are
average S/Ns per epoch of 1490 and 530, respectively. As in the simulations
shown in Figure 8, we can see that the data epochs can be dropped from 2220
to ∼1500 while retaining quite similar peak and off-peak structure.

Figure 10. Simulations showing the trade-off between S/N per epoch and
number of epochs. The light blue curve represents the simulations
approximating our data set, with the same S/N per epoch, number of epochs,
and epoch orbital positions. The dark blue curve, likewise, represents our data
set, but all seven of the epochs are simulated assuming NIRSPEC2 wavelength
coverage and resolution. The black curve shows the results of simulations with
20 epochs evenly spaced across the orbit, but the same total S/N. The much
stronger peak in the black curve implies that more, lower S/N epochs, i.e.,
greater orbital coverage, would give a much stronger detection than fewer,
higher S/N epochs.
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in the multi-epoch technique, particularly for heterogeneous
data sets (consisting of epochs with different resolutions,
wavelength regions, number of orders, etc.). Future work
comparing the three combination versions on 2D CCs would be
useful for really understanding the benefits and weaknesses of
each technique, and for determining which would provide the
strongest multi-epoch results moving forward.

We also present simulations that can reproduce the off-peak
structure in the multi-epoch detection of HD187123b. We find
that the detection is far from shot-noise limited and that in both
simulations and data, the S/N per epoch could be reduced from
2220 to 1500 without a significant change in the shape of the
normalized log likelihood versus Kp curve. We see that if we
obtained many, lower S/N epochs rather than a few, higher S/N
epochs, there would be a large increase in detection confidence,
even without needing to fit the data results with simulated results.

Being able to obtain useful information from lower S/N
epochs could actually have a large impact on multi-epoch
observing strategy. Since S/N increases with the square root of
time, pushing from 2220 S/N epochs to 1500 S/N epochs, or
from a total S/N of 5874 to 3968 per resolution element, we
could save a factor of 2.2 in time. This suggests that a more
traditional stellar radial velocity observation approach, such as
a dedicated program on a smaller ground-based telescope that
could obtain many lower S/N epochs of data from many hot
Jupiter systems, could be successful.

The multi-epoch technique aims to learn about the bulk and
atmospheric properties of exoplanets through directly detecting
their Keplerian line-of-sight orbital velocity, Kp. More confident
and constrained measurements of Kp, obtained through data sets
with many, lower S/N epoch data sets, would provide more
precise measurements of mass and inclination. Additionally,
confident detections of Kp will be critical for using multi-epoch
detections to constrain atmospheric parameters, including
metallicity and C/O. Öberg et al. (2011) found that, for giant
planets that form via core accretion, the C/O ratio of the planet’s
atmosphere could be an indicator of whether it formed beyond
the water snowline, where the gaseous C/O ratio is enriched
relative to the stellar value, or within the water snowline, where
the gaseous C/O ratio equals the stellar value. Such a
measurement for a system like HD187123, with both a hot
Jupiter and a Jupiter analog, could help to elucidate the processes
of planetary formation and migration.

We do note that a C/O measurement would likely require
either K- or M-band data, in addition to the L-band data
presented here, as the L band contains H2O lines while the K
and M bands have prominent CO features. Future work to
investigate whether many, lower S/N epochs could similarly
improve K- and M-band detections, and how these improve-
ments would affect constraints on C/O, would be illuminating.

7. Conclusion

In this paper, we present a simulation framework that
enables us to reduce the structured noise from multi-epoch
direct detection campaigns (as in Lockwood et al. 2014;
Piskorz et al. 2016, 2017, 2018) and elucidate the true
planetary detection. Using this framework, we report the 6.5σ
detection of the thermal emission from the hot Jupiter
HD187123b, and constrain its Keplerian orbital velocity to
53±13 km s−1. This allows us to measure the true planetary
mass and orbital inclination of -

+ M1.4 0.3
0.5

J and 21°±5°,
respectively. We also report the presence of water in its

atmosphere. We use these data sets to compare three methods
of converting CCs to log likelihoods in order to combine them
(Zucker 2003; Brogi & Line 2019) on multi-epoch data, and
show that the Zucker log(L) approach is least affected by
unwanted planet/star correlation for this data set. We also
show that an observing strategy that spreads the total S/N
across a planet’s orbit rather than isolating it into a few, higher
S/N epochs would inherently reduce this unwanted structure.
The simulation framework presented here, and the optimized
observing strategies it will permit, could provide a path from
the atmospheres of non-transiting hot Jupiters down to those of
habitable zone, Earth-sized planets.
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Appendix
Combining CCs

As high-resolution CC spectroscopy becomes more and
more widely used to detect and characterize exoplanets, the
questions of how to combine both (1) different segments of
high-resolution data and (2) high- (e.g., NIRSPEC, CRIRES)
and low- (e.g., Spitzer, James Webb Space Telescope)
resolution data become important. Zucker (2003) introduced
an approach to convert CCs to log likelihoods (CC-to-log(L))
that can be applied in two ways. We will call these two
versions of the Zucker (2003) approach (1) the Zucker log(L)
method and (2) the Zucker maximum likelihood (ML) method.
Previous multi-epoch detections of hot Jupiters (Lockwood
et al. 2014; Piskorz et al. 2016, 2017, 2018) have used the
Zucker ML method. Brogi & Line (2019) recently presented a
new CC-to-log(L) routine.
In this work, and for the multi-epoch technique in general, we

use 2D CCs to detect the unchanging stellar and planetary
velocities during each epoch (see Section 4.1). Once the 2D CCs
are calculated, we test each of the three different approaches to
converting these CCs to log likelihoods. We first describe how
the 2D CC is calculated, and then describe each of the approaches
to converting these 2D CCs to log likelihoods.

A.1. One- and Two-dimensional CCs

When there is only one dominant spectral component in the
data, the data can be described by the model

= - +f n ag n s d A1n( ) ( ) ( )

where a is a scaling factor, g(n) is a template spectrum in the same
reference frame as the data, s is a wavelength shift, and dn is the
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noise at bin n. In this case, a 1D CC function C(s) is sufficient to
match the model to the data and can be computed as

s s
=

S -
C s

f n g n s

N
, A2n

f g
2 2

( ) ( ) ( ) ( )

where f (n) and g(n) are the target and template spectra,
respectively, and the variances of the target (sf ) and the
template (sg) are given by

s = S
N

i n
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. A3i n
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When there is more than one spectral component in the data,
however, as is the case in the multi-epoch technique, the model
described by Equation (A1) can no longer accurately describe
the data. Rather, a model considering two components is
necessary,

a= - + - +f n a g n s g n s d . A4n1 1 2 2( ) [ ( ) ( )] ( )

As above, a is a scaling factor, and dn is the noise at bin n. The
two spectral templates are given by g1 and g2 with wavelength
shifts of s1 and s2, respectively. The scaling factor α accounts
for the intensity ratio between the two template models. For
this work, we set α equal to 0.0014, which is the spectroscopic
contrast given by our stellar and planetary models and
assuming a planetary radius of 1 RJ. We have found, however,
that the shape of the resulting log likelihood surfaces, from
both data and simulations, is independent of α in the range of

´ -1.4 10 3 to 10−9. This is consistent with what was seen by
Lockwood et al. (2014) and Piskorz et al. (2016).

Zucker & Mazeh (1994) showed that a 2D CC aR s s, ,1 2( )
could be calculated as
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where sf is the same as described above, but s s s,g 1 2( ) can now
be calculated as

s s as s a s= + - +C s s2 . A6g g g g g1
2

1 2 12 2 1
2

2
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C12 is the correlation between the two templates.
In all of the CC-to-log(L) approaches described below, we

combine 2D CCs rather than 1D CCs. This involves replacing
(C(s)) with ( aR s s, ,1 2( )) and using sg calculated by
Equation (A6) rather than by Equation (A3).

Once we have calculated the 2D log(L) surface for each
epoch, we reduce to the 1D log likelihood functions (e.g., as
seen in Figure 3) by taking a cut along the maximum stellar
velocity, which we check matches the expected stellar velocity
from the combined systemic and barycentric velocities.

A.2. Zucker (2003) Llog( ) Approach
First, all correlations from a single night (segments from all

orders after the saturated tellurics are removed) are combined
using the approach from Zucker (2003). This considers
the observed spectrum f (n) and a model g(n) with a scaling
factor (a), a shift (s), and random white Gaussian noise (σ).
Expressions for a, σ, and s can be found that maximize the
log(L) between the observed spectrum and the model(s).
By substituting these expressions into the log(L) equation,

Zucker (2003) showed that CCs can be related to log
likelihoods (log(L)) as

= - -L
N

Rlog
2

log 1 . A72( ) ( ) ( )

The individual CCs are converted to log likelihoods and
summed for each epoch. The fact that the CC R is squared in
this operation means that a negative correlation would provide
the same log likelihood as a positive correlation. In other
words, a model would give the same log likelihood when fit to
the data at a given velocity whether it were multiplied by 1 or
−1. This is concerning because, while absorption and emission
lines are not merely related by a sign-flip, correlation between
an absorption line in the data with an emission line in the
model, or vice versa, would produce an anticorrelation, which
would be given the same likelihood as a corresponding positive
correlation by Equation (A7). The pressure/temperature profile
of a planet’s atmosphere, whether inverted or non-inverted,
determines whether lines will show up in absorption versus
emission, and so not being able to distinguish between the two
cases severely limits our ability to understand atmospheres. To
account for this, we correct any negative correlation values to
zero. This is done by calculating Llog( ) as

=
-
+ <

=
- S S <

S





y s
N R s R s

N R s R s

L s
y s y s

y s

log 1 0

log 1 0

log
0

0 0
. A8

i
i i i

i i i

i i i i

i i

2

2

1

2
⎪

⎪

⎪

⎪

⎧⎨⎩
⎫⎬⎭

⎧
⎨
⎩

⎫
⎬
⎭

( )
( ( ) ) ( )
( ( ) ) ( )

( ( ))
( ) ( )

( )
( )

Applying this correction after summing the yi’s, rather than for
each negative Ri, accounts only for heavily weighted negative
correlations. That is, we do not set negative values in the
individual Ri’s equal to zero before combining them because
we wish to retain the information from negative Ri’s that arise
from noise or uncertainty in the spectra. By waiting until the
yi’s are combined to make this cut, we avoid automatically
losing both small negative values in the Ri’s or negative values
in an Ri that have very small relative weighting (Ni). This
correction creates the horizontal portions at zero of the stellar
log likelihood curve in panel (A) of Figure 3. This method of
correcting negative correlations has been used in previous
multi-epoch analyses (e.g., Piskorz et al. 2016, 2017, 2018),
and we describe it here for transparency.
Stellar lines are the dominant component of our data set, and

the real planetary signal must correspond with the correct
stellar velocity. In other words, we can only detect the
planetary signal once the model and data stellar lines are
matched up. Therefore, the variation in the planetary correla-
tion is around the mean stellar correlation peak, which is well
above zero. As a result, and because we know that the stellar
lines are in absorption rather than emission, negative correla-
tion values only appear, and are corrected, at incorrect stellar
velocities. Because the planetary correlation values will never
reach down to, or below, zero, correcting negative correlation
will not affect the planetary curves. Anticorrelation between the
planetary lines in the data and model will be distinguishable
from correlation between them and will result in smaller (i.e.,
below the stellar correlation baseline), but still positive,
correlation values.
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We want to stress that negative correlations should not be
corrected when using a 1D CC or when the two spectral
components in a 2D CC are of similar strengths. Doing so
would artificially alter the distribution of likelihood values,
which would invalidate the uncertainties given by the resulting
likelihood surface.

Then, the log(L)’s from different nights of data are converted
from vsec to Kp space according to Equation (2). Finally, the log
likelihoods are summed to find the most likely Kp.

A.3. Zucker (2003) ML Approach

The Zucker ML method follows the Zucker log(L) method
up to Equation (A7). However, rather than combining the
likelihoods at this point, Zucker (2003) shows that individual
correlations can be combined into an “effective” correlation
value, ML, as follows:

- = S -N s N R slog 1 ML log 1 A9i i itot
2 2[ ( )] [ ( )] ( )

where the right side is the sum of the log(L)’s of individual
segments, and the left side is the log(L) of the full data set
(from a single night where the planetary velocity is constant).
The Riʼs and Niʼs are the 2D CCs and number of pixels of each
of the segments, respectively, and Ntot is the total number of
pixels. By analogy, ML is the effective correlation of the full
data set. Because ML is an effective correlation, we rename it R
(s) and evaluate it as,

= - S -R s
N

N R s1 exp
1

log 1 . A10i i i
tot

2
⎛
⎝⎜

⎞
⎠⎟( ) [ ( )] ( )

This gives us an effective correlation for each epoch. We
correct for negative correlation values here in an analogous
fashion to that described for the Zucker log(L) approach. The
effective CCs can then be converted to log(L) following
Lockwood et al. (2014):

= +L R slog const . A11( ) ( ) ( )

Finally, the log(L)ʼs from different nights are converted from
vsec to Kp space, as in the other approaches, and summed.

This was the CC-to-log(L) approach used in the previous
NIRSPEC multi-epoch detection papers (Lockwood et al.
2014; Piskorz et al. 2016, 2017, 2018).

A.4. Brogi & Line (2019) Approach

Brogi & Line (2019) recently presented a new approach to
converting CCs to log(L). Instead of substituting the expression
for a that maximizes the log(L) between an observed spectrum
and a model, they set a equal to 1. Setting a to 1 allows for
discrimination between correlation and anticorrelation, or
between emission and absorption lines. We note that in our
2D case, where there are both stellar and planetary signals in
the data, a negative a would invert the stellar absorption lines
as well as the planetary lines. Our data have high enough S/Ns
on the stellar lines that flipping the stellar model would produce
a strong anticorrelation, which would be corrected to zero as
described above. Therefore, our data would not select for
negative a values, and even without setting a to 1, the Zucker
methods would not run into the issue of confusing planetary
(and stellar) emission and absorption lines.

By setting a=1, Brogi & Line (2019) derive the expression

s s
s
s

s
s

= - + + -L
N

R slog
2

log log 2 .

A12

f g
f

g

g

f

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

( ) ( ) ( )

( )

We stress that since our approach uses 2D CCs, R(s) and sg are
the two-dimensional variants described in Equations (A5) and
(A6), rather than the 1D C(s) and sg described in Equations (A2)
and (A3).
As in the Zucker (2003) approach, the log(L) functions from

a single night are summed, then the summed log(L) for each
night is converted from vsec to Kp space and summed.
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