35 research outputs found

    Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Get PDF
    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear

    Application of Carbon Based Nano-Materials to Aeronautics and Space Lubrication

    Get PDF
    The tribology program at NASA Glenn Research Center in Cleveland, Ohio, is investigating carbon based nano-particles for their potential in advanced concept lubrication products. Service conditions range from high temperature atmospheric to low temperature vacuum. Some of the lubricants and surface coatings of tribological significance that we have evaluated include neat nano-particles, both grown in-situ and as bulk material deposited on the substrate, and nano-particles dispersed in oils which are all highly substrate interactive. We discuss results of testing these systems in a spiral orbit tribometer (SOT) and a unidirectional pin-on-disc (PoD) tribometer. A nano-onions/Krytox mixture evaluated as a lubricant for angular contact bearings in air caused a marked lowering of the coefficient of friction (CoF) (0.04 to 0.05) for the mixture with an eight-fold improvement in lifetime over that of the Krytox alone. In vacuum, no effect was observed from the nano-onions. Multi-walled nanotubes (MWNT) and graphitized MWNT were tested under sliding friction in both air and vacuum. The MWNT which were grown in-situ oriented normal to the sliding surface exhibited low CoF (0.04) and long wear lives. Bulk MWNT also generate low CoF (0.01 to 0.04, vacuum; and 0.06, air) and long wear life (>1 million orbits, vacuum; and >3.5 million, air). Dispersed graphitized MWNT were superior to MWNT and both were superior to aligned MWNT indicating that orientation is not an issue for solid lubrication. Single-walled nanotubes (SWNT) were modified by cutting into shorter segments and by fluorination. All SWNTs exhibited low CoF in air, with good wear lives. The SWNT with slight fluorination yielded an ultra-low CoF of 0.002 although the best wear life was attributed to the nascent SWNT

    Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Get PDF
    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems

    Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    No full text
    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems

    Carbon Composites—Graphene-Oxide-Catalyzed Sugar Graphitization

    No full text
    Utilization of biopolymers to form graphitic carbons is challenged by their high oxygen content and resulting curved and defective carbon lamellae upon high-temperature heat-treatment. Two composites, one with graphene-oxide (GO) and the other with reduced graphene-oxide (rGO) as fillers, respectively, in a matrix of sugar, each for the same added 2.5 wt.%, exhibited different degrees of graphitization compared to pure sugar on its own. Reactive oxygen groups on GO contribute to reactive templating and crystallite formation. Under high-temperature heat-treatment, sugar, a well-known non-graphitizing precursor, is converted to graphitic carbon in the presence of GO. Possessing fewer oxygen groups, rGO forms two phases in the sugar matrix—a non-graphitic phase and a graphitic phase. The latter is attributed to the remaining oxygen on the rGO

    Nanostructure Quantification of Carbon Blacks

    No full text
    Carbon blacks are an extensively used manufactured product. There exist different grades by which the carbon black is classified, based on its purpose and end use. Different properties inherent to the various carbon black types are a result of their production processes. Based on the combustion condition and fuel used, each process results in a carbon black separate from those obtained from other processes. These carbons differ in their aggregate morphology, particle size, and particle nanostructure. Nanostructure is key in determining the material’s behavior in bulk form. A variety of carbon blacks have been analyzed and quantified for their lattice parameters and structure at the nanometer scale, using transmission electron microscopy and custom-developed fringe analysis algorithms, to illustrate differences in nanostructure and their potential relation to observed material properties

    Carbon Nanostructure Curvature Induced from the Rapid Release of Sulfur upon Laser Heating

    No full text
    Laboratory-generated synthetic soot from benzene and benzene–thiophene was neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and furnace annealed. Furnace annealing of sulfur doped synthetic soot resulted in the formation of micro-cracks due to the high pressures caused by explosive sulfur evolution at elevated temperature. The heteroatom sulfur affected the carbon nanostructure in a different way than oxygen. Sulfur is thermally stable in carbon up to ~1000 °C and thus, played little role in the initial low temperature (500 °C) carbonization. As such, it imparted a relatively unobservable impact on the nanostructure, but rather, acted to cause micro-cracks upon rapid release in the form of H2S and CS2 during subsequent traditional furnace heat treatment. In contrast, Nd:YAG laser heating of the sulfur doped sample acted to induce curvature in the carbon nanostructure. The observed curvature was the result of carbon annealing occurring simultaneously with sulfur evolution due to the rapid heating rate

    Soot Nanostructure And Its Impact Upon The O2 Oxidation Rate

    No full text
    Studies of soot oxidation have ranged from in situ flame studies to shock tubes to flow reactors. Each of these systems possesses particular advantages and limitations related to temperature, time and chemical environments. Despite the aforementioned differences, these soot oxidation investigations share three striking features. First and foremost is the wide variation in the rates of oxidation. Reported oxidation rates vary by factors of +6 to - 20 relative to the Nagle Strickland-Constable (NSC) rate for graphite oxidation [3]. Rate variations are not surprising, as the temperatures, residence times, types of oxidants and methods of oxidation differ from study to study. Nevertheless, a valid explanation for rate differences of this magnitude has yet to be presented
    corecore