1,216 research outputs found

    Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies

    Full text link
    The formation of alpha-clusters in nuclei close to the decay thresholds is discussed. These states can be considered to be boson-condensates, which are formed in a second order phase transition in a mixture of nucleons and alpha-particles. The de Broglie wavelength of the alpha-particles is larger than the nuclear diameter, therefore the coherent properties of the alpha-particles give particular effects for the study of such states. The states are above the thresholds thus the enhanced emission of multiple-alphas into the same direction is observed. The probability for the emission of multiple-alphas is not described by Hauser-Feshbach theory for compound nucleus decay.Comment: 21 pages, 12 figures

    Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response

    Full text link
    We present a formalism of distorted wave impulse approximation (DWIA) for analyzing spin observables in nucleon inelastic and charge exchange reactions leading to the continuum. It utilizes response functions calculated by the continuum random phase approximation (RPA), which include the effective mass, the spreading widths and the \Delta degrees of freedom. The Fermi motion is treated by the optimal factorization, and the non-locality of the nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using the formalism we calculated the spin-longitudinal and the spin-transverse cross sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The calculation reasonably reproduced the observed ID_q, which is consistent with the predicted enhancement of the spin-longitudinal response function R_L. However, the observed ID_p is much larger than the calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response function R_T obtained by the (e,e') scattering. The Landau-Migdal parameter g'_N\Delta for the N\Delta transition interaction and the effective mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the plane wave impulse approximation (PWIA) with the effective nucleon number approximation for the absorption, by means of which R_L and R_T have conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure

    Reaction mechanism and characteristics of T_{20} in d + ^3He backward elastic scattering at intermediate energies

    Get PDF
    For backward elastic scattering of deuterons by ^3He, cross sections \sigma and tensor analyzing power T_{20} are measured at E_d=140-270 MeV. The data are analyzed by the PWIA and by the general formula which includes virtual excitations of other channels, with the assumption of the proton transfer from ^3He to the deuteron. Using ^3He wave functions calculated by the Faddeev equation, the PWIA describes global features of the experimental data, while the virtual excitation effects are important for quantitative fits to the T_{20} data. Theoretical predictions on T_{20}, K_y^y (polarization transfer coefficient) and C_{yy} (spin correlation coefficient) are provided up to GeV energies.Comment: REVTEX+epsfig, 17 pages including 6 eps figs, to be published in Phys. Rev.

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(νe,e)12N^{12}C(\nu_e,e^-)^{12}N and 12C(νμ,μ)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for νμ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×1040cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×1040cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to νe\nu_{e} coming from the decay-at-rest of μ+\mu^+ is 16.4×1042cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
    corecore