32 research outputs found
Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement
This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
General intelligence is associated with working memory-related brain activity: new evidence from a large sample study
Psychometric intelligence is closely related to working memory capacity. Here we aim to determine the associations of neural activation patterns during the N-back working memory paradigm with psychometric intelligence and working memory performance. We solved the statistical problems of previous studies using (1) a large cohort of 1235 young adults and (2) robust voxel-by-voxel permutation-based statistics at the whole-brain level. Many of the significant correlations were we ak, and our findings were not consistent with those of previous studies. We observed that many of the significant correlations involved brain areas in the periphery or boundaries between the task-positive network (TPN) and task-negative network (TNN), suggesting that the expansion of the TPN or TNN is associated with greater cognitive ability. Lower activity in TPN and less task-induced deactivation (TID) in TNN were associated with greater cognitive ability. These findings indicate that subjects with greater cognitive ability have a lower brain response to task demand, consistent with the notion that TID in TNN reflects cognitive demand but partly inconsistent with the prevailing neural efficiency theory. One exception was the pre-supplementary motor area, which plays a key role in cognitive control and sequential processing. In this area, intelligent subjects demonstrated greater activity related to working memory, suggesting that the pre-supplementary motor area plays a unique role in the execution of working memory tasks in intelligent subjects
Neural mechanisms of imitation and 'Mirror Neuron' functioning in autistic spectrum disorder
An association between autistic spectrum disorder and imitative impairment might result from dysfunction in mirror neurons (MNs) that serve to relate observed actions to motor codings. To explore this hypothesis, we employed a functional magnetic resonance imaging (MRI) protocol previously used to identify the neural substrate of imitation, and human MN function, to compare 16 adolescent males of normal intelligence with autistic spectrum disorder (ASD) and age, sex and IQ matched controls. In the control group, in accord with previous findings, we identified activity attributable to MNs in areas of the right parietal lobe. Activity in this area was less extensive in the ASD group and was absent during non-imitative action execution. Broca's area was minimally active during imitation in controls. Differential patterns of activity during imitation and action observation in ASD and controls were most evident in an area at the right temporo-parietal junction also associated with a 'theory of mind' (ToM) function. ASD participants also failed to show modulation of left amygdala activity during imitation that was evident in the controls. This may have implications for understanding the imitation of emotional stimuli in ASD. Overall, we suggest that ASD is associated with altered patterns of brain activity during imitation, which could stem from poor integration between areas serving visual, motor, proprioceptive and emotional functions. Such poor integration is likely to adversely affect the development of ToM through imitation as well as other aspects of social cognitive function in ASD. (c) 2005 Elsevier Ltd. All rights reserved.</p
Structural white matter deficits in high-functioning individuals with autistic spectrum disorder:a voxel-based investigation
A number of imaging and neuropathological studies have reported structural abnormalities in white matter areas such as the corpus callosum in autism spectrum disorder (ASD). Differences in both global brain volume and the size of specific neural structures have been reported. In order to expand these previously reported findings and to describe more precisely the nature of such structural changes, we performed a voxel-based morphometric whole brain analysis, using a group-specific template, in male adolescents with ASD. Fifteen individuals with normal intelligence and ASD, and a group of 16 controls, matched for age, sex, and IQ, were investigated. High-resolution T1-weighted 3D data sets were acquired and analysed. Local white matter volume deficits were found in the corpus callosum, particularly in the anterior splenium and isthmus, and right hemisphere. White matter volume deficits were also found in the left middle temporal, right middle frontal, and left superior frontal gyri. No significant areas of increased white matter volume were found. Our findings support the hypothesis that reduced white matter volume in the corpus callosum and right hemisphere may play a role in the pathophysiology of ASD. (C) 2004 Elsevier Inc. All rights reserved.</p
Structural white matter deficits in high-functioning individuals with autistic spectrum disorder:a voxel-based investigation
A number of imaging and neuropathological studies have reported structural abnormalities in white matter areas such as the corpus callosum in autism spectrum disorder (ASD). Differences in both global brain volume and the size of specific neural structures have been reported. In order to expand these previously reported findings and to describe more precisely the nature of such structural changes, we performed a voxel-based morphometric whole brain analysis, using a group-specific template, in male adolescents with ASD. Fifteen individuals with normal intelligence and ASD, and a group of 16 controls, matched for age, sex, and IQ, were investigated. High-resolution T1-weighted 3D data sets were acquired and analysed. Local white matter volume deficits were found in the corpus callosum, particularly in the anterior splenium and isthmus, and right hemisphere. White matter volume deficits were also found in the left middle temporal, right middle frontal, and left superior frontal gyri. No significant areas of increased white matter volume were found. Our findings support the hypothesis that reduced white matter volume in the corpus callosum and right hemisphere may play a role in the pathophysiology of ASD. (C) 2004 Elsevier Inc. All rights reserved.</p
Neural mechanisms of imitation and 'Mirror Neuron' functioning in autistic spectrum disorder
An association between autistic spectrum disorder and imitative impairment might result from dysfunction in mirror neurons (MNs) that serve to relate observed actions to motor codings. To explore this hypothesis, we employed a functional magnetic resonance imaging (MRI) protocol previously used to identify the neural substrate of imitation, and human MN function, to compare 16 adolescent males of normal intelligence with autistic spectrum disorder (ASD) and age, sex and IQ matched controls. In the control group, in accord with previous findings, we identified activity attributable to MNs in areas of the right parietal lobe. Activity in this area was less extensive in the ASD group and was absent during non-imitative action execution. Broca's area was minimally active during imitation in controls. Differential patterns of activity during imitation and action observation in ASD and controls were most evident in an area at the right temporo-parietal junction also associated with a 'theory of mind' (ToM) function. ASD participants also failed to show modulation of left amygdala activity during imitation that was evident in the controls. This may have implications for understanding the imitation of emotional stimuli in ASD. Overall, we suggest that ASD is associated with altered patterns of brain activity during imitation, which could stem from poor integration between areas serving visual, motor, proprioceptive and emotional functions. Such poor integration is likely to adversely affect the development of ToM through imitation as well as other aspects of social cognitive function in ASD. (c) 2005 Elsevier Ltd. All rights reserved.</p
A voxel based investigation of brain structure in male adolescents with autistic spectrum disorder
Autistic spectrum disorder (ASD) has been associated with abnormal neuroanatomy in many imaging and neuropathological studies. Both global brain volume differences and differences in the size of specific neural structures have been reported. Here, we report a voxel-based morphometric whole brain analysis, using a group specific template, on 16 individuals of normal intelligence with autistic spectrum disorder (ASD), and a group of 16 age-, sex- and IQ-matched controls. Total grey matter volume was increased in the ASD group relative to the control group, with local volume increases in the right fusiform gyrus, the right temporo-occipital region and the left frontal pole extending to the medial frontal cortex. A local decrease in grey matter volume was found in the right thalamus. A decrease in global white matter volume in the ASD group did not reach significance. We found the increase in grey matter volume in ASD subjects was greatest in those areas recognised for their role in social cognition, particularly face recognition (right fusiform gyrus), mental state attribution: 'theory of mind' (anterior cingulate and superior temporal sulcus) and perception of eye gaze (superior temporal gyrus). The picture as a whole may reflect an abnormally functioning social cognitive neural network. We suggest that increased grey matter volume may play a pivotal role in the aetiology of the autistic syndrome. (C) 2004 Elsevier Inc. All rights reserved.</p