2 research outputs found

    Geological Terrain Mapping using Geographic Information System (GIS) and Drone Photogrammetry

    Get PDF
    The research area was conducted within the Bukit Persekutuan, Kuala Lumpur, and it was located at the latitude 3° 8'32.93"N and longitude 101°40'32.80"E. The researcher carried out geological terrain mapping to evaluate the research area in accordance with the geological terrain classification attributes of each thematic map produced, namely, Terrain map, slope gradient map, erosion, and instability map, as well as construction suitability map. The occurrence of landslide events within the research area becomes a major contributing factor to thoroughly conducting an investigation by field mapping and analysing using the Geographic Information System (GIS) technology. The application of Geographic Information System (GIS) and drone photogrammetry images play an essential role to analyze and processing the data, thus, generate the thematic maps. The research area indicates that about 79.11% of the overall area was not appreciable with erosion, 8.58% contribute to the erosion, 11.00% of recent general instability and 2.97% represent a landslide event. The suitability for development mapping illustrated Class I (23.40), Class II (36.37%), Class III (26.39%), and Class IV (15.50%) where it can be referred to the construction suitability classification system, the suitability for development was high in class I, moderate in class II, low in class III and not suitable in class IV

    Assessing the condition of buried pipe using ground penetrating radar

    Get PDF
    The invention of Ground Penetrating Radar (GPR) technology has facilitated the possibility of detecting buried utilities and has been used primarily in civil engineering for detecting structural defects, such as voids and cavities in road pavements, slabs and bridge decks, but has not been used to assess the condition of buried pipes. Pipe deterioration can be defined as pipes where, for example, cracking, differential deflection, missing bricks, collapses, holes, fractures and corrosion exists. Assessing the deterioration of underground pipes is important for service efficiency and asset management. This thesis describes a research project that focused on the use of GPR for assessing the condition of buried pipes. The research involved the construction of a suitable GPR test facility in the laboratory to conduct controlled testing in a dry sand. Plastic pipes were chosen for the experiments. A series of laboratory experiments were conducted to determine the validity and effectiveness of standard commercially available GPR technology in assessing the condition of buried utilities with common types of damage. Several types of damage to the plastic pipe were investigated with respect to different GPR antenna frequencies. The GPR surveys were carried out in order to obtain signal signatures from damaged and undamaged pipes buried at 0.5m depth. These surveys were organised on a grid pattern across the surface of the sand in the test facility. The results presented in this thesis show that GPR can identify certain types of damage associated with a buried pipe under these controlled laboratory conditions
    corecore