52 research outputs found

    Failure resistant thermal and environmental barrier coating concepts

    Get PDF
    Silicon-based ceramic matrix composites are rapidly eroded by the high temperature water vapor that is present in the combustion gases of advanced gas turbine engines. They must therefore be protected from erosion by prime reliant thermal and environmental barrier coatings. These coating systems typically use a silicon bond coat with a high Si-SiC interfacial toughness. This forms a silica thermally grown oxide (TGO) when exposed to oxidizing chemical species. The rate of TGO formation can be greatly reduced by use of a diffusion barrier layer with low oxidizer diffusivity. Ideally, the temperature of this layer (and thus its diffusivity) is reduced by means of a thermal barrier coating (TBC). Concepts for the deposition of these T/EBC systems will be described and their failure modes under simulated engine test conditions discussed. These insights are used to identify improved T/EBC designs that promise to lessen their risk of failure

    Concepts for enhancing the life of environmental coatings systems

    Get PDF
    Please click Additional Files below to see the full abstract

    Cost Models for MMC Manufacturing Processes

    Get PDF
    The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations

    Factors affecting the performance of eddy current densification sensors

    Get PDF
    Hot Isostatic Pressing (HIP) is an increasingly important near net shape process for producing fully dense components from powders [1]. It involves filling a preshaped metal canister with alloy powder, followed by evacuation, and sealing. The can is then placed in a HIP (a furnace that can be pressurized to ~200MPa with an inert gas such as argon). The can is subjected to a heating/pressurization cycle that softens and compacts the powder particles to a fully dense mass and a shape determined by the can shape, the powders initial packing and the thermal-mechanical cycle imposed [2]. Today, many metals, alloys and intermetallics are processed this way (including nickel based superalloys, titanium alloys, NiA1, etc.) and it is increasingly used to produce metal matrix composites

    Guided Interface Waves

    Get PDF
    Many of tomorrow’s technologies are dependent upon the emergence of new advanced materials with superior stiffness and strength but reduced density. Metal matrix composites (MMC’s) consisting of light metal matrices (e. g., aluminum, titanium or magnesium) reinforced with very stiff ceramic fibers or particles (e. g. SiC, AI2O3 or graphite) show considerable promise for satisfying this need. However, the satisfactory performance of these materials has been found to be critically dependent upon the attainment of optimal properties at the metal-ceramic interface; a problem that is compounded by the possibility of chemical reactions between the reactive metal matrix and ceramic reinforcement. Of particular import are the interface adhesion and local elastic properties. Unfortunately no methods exist for the measurement of these quantities even for macroscopic interfaces let alone for the microscopic interfaces occurring within MMC’s

    Toward Ultralight High Strength Structural Materials via Collapsed Carbon Nanotube Bonding

    Get PDF
    The growing commercial availability of carbon nanotube (CNT) macro-assemblies such as sheet and yarn is making their use in structural composite components increasingly feasible. However, the mechanical properties of these materials continue to trail those of state-of-the-art carbon fiber composites due to relatively weak inter-tube load transfer. Forming covalent links between adjacent CNTs promises to mitigate this problem, but it has proven difficult in practice to introduce them chemically within densified and aligned CNT materials due to their low permeability. To avoid this limitation, this work explores the combination of pulsed electrical current, temperature, and pressure to introduce inter-CNT bonds. Reactive molecular dynamics simulations identify the most probable locations, configurations, and conditions for inter-nanotube bonds to form. This process is shown to introduce covalent linkages within the CNT material that manifest as improved macroscale mechanical properties. The magnitude of this effect increases with increasing levels of prealignment of the CNT material, promising a new synthesis pathway to ultralight structural materials with specific strengths and stiffnesses exceeding 1 and 100 GPa/(g/cu.cm), respectively

    Stochastic Simulation of Mudcrack Damage Formation in an Environmental Barrier Coating

    Get PDF
    The FEAMAC/CARES program, which integrates finite element analysis (FEA) with the MAC/GMC (Micromechanics Analysis Code with Generalized Method of Cells) and the CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures / Life Prediction) programs, was used to simulate the formation of mudcracks during the cooling of a multilayered environmental barrier coating (EBC) deposited on a silicon carbide substrate. FEAMAC/CARES combines the MAC/GMC multiscale micromechanics analysis capability (primarily developed for composite materials) with the CARES/Life probabilistic multiaxial failure criteria (developed for brittle ceramic materials) and Abaqus (Dassault Systmes) FEA. In this report, elastic modulus reduction of randomly damaged finite elements was used to represent discrete cracking events. The use of many small-sized low-aspect-ratio elements enabled the formation of crack boundaries, leading to development of mudcrack-patterned damage. Finite element models of a disk-shaped three-dimensional specimen and a twodimensional model of a through-the-thickness cross section subjected to progressive cooling from 1,300 C to an ambient temperature of 23 C were made. Mudcrack damage in the coating resulted from the buildup of residual tensile stresses between the individual material constituents because of thermal expansion mismatches between coating layers and the substrate. A two-parameter Weibull distribution characterized the coating layer stochastic strength response and allowed the effect of the Weibull modulus on the formation of damage and crack segmentation lengths to be studied. The spontaneous initiation of cracking and crack coalescence resulted in progressively smaller mudcrack cells as cooling progressed, consistent with a fractal-behaved fracture pattern. Other failure modes such as delamination, and possibly spallation, could also be reproduced. The physical basis assumed and the heuristic approach employed, which involves a simple stochastic cellular automaton methodology to approximate the crack growth process, are described. The results ultimately show that a selforganizing mudcrack formation can derive from a Weibull distribution that is used to describe the stochastic strength response of the bulk brittle ceramic material layers of an EBC
    • …
    corecore