79 research outputs found

    Loss of Hsp70 Exacerbates Pathogenesis But Not Levels of Fibrillar Aggregates in a Mouse Model of Huntington's Disease

    Get PDF
    Endogenous protein quality control machinery has long been suspected of influencing the onset and progression of neurodegenerative diseases characterized by accumulation of misfolded proteins. Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) tract in the protein huntingtin (htt), which leads to its aggregation and accumulation in inclusion bodies. Here, we demonstrate in a mouse model of HD that deletion of the molecular chaperones Hsp70.1 and Hsp70.3 significantly exacerbated numerous physical, behavioral and neuropathological outcome measures, including survival, body weight, tremor, limb clasping and open field activities. Deletion of Hsp70.1 and Hsp70.3 significantly increased the size of inclusion bodies formed by mutant htt exon 1, but surprisingly did not affect the levels of fibrillar aggregates. Moreover, the lack of Hsp70s significantly decreased levels of the calcium regulated protein c-Fos, a marker for neuronal activity. In contrast, deletion of Hsp70s did not accelerate disease in a mouse model of infectious prion-mediated neurodegeneration, ruling out the possibility that the Hsp70.1/70.3 mice are nonspecifically sensitized to all protein misfolding disorders. Thus, endogenous Hsp70s are a critical component of the cellular defense against the toxic effects of misfolded htt protein in neurons, but buffer toxicity by mechanisms independent of the deposition of fibrillar aggregates

    Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration

    Get PDF
    In order to independently study the numerous variables that influence cell movement, it will be necessary to employ novel tools and materials that allow for exquisite control of the cellular microenvironment. In this work, we have applied advanced 3D micropatterning technology, known as two-photon laser scanning lithography (TP-LSL), to poly(ethylene glycol) (PEG) hydrogels modified with bioactive peptides in order to fabricate precisely designed microenvironments to guide and quantitatively investigate cell migration. Specifically, TP-LSL was used to fabricate cell adhesive PEGRGDS micropatterns on the surface of non-degradable PEG-based hydrogels (2D) and in the interior of proteolytically degradable PEG-based hydrogels (3D). HT1080 cell migration was guided down these adhesive micropatterns in both 2D and 3D, as observed via time-lapse microscopy. Differences in cell speed, cell persistence, and cell shape were observed based on variation of adhesive ligand, hydrogel composition, and patterned area for both 2D and 3D migration. Results indicated that HT1080s migrate faster and with lower persistence on 2D surfaces, while HT1080s migrating in 3D were smaller and more elongated. Further, cell migration was shown to have a biphasic dependence on PEG-RGDS concentration and cells moving within PEG-RGDS micropatterns were seen to move faster and with more persistence over time. Importantly, the work presented here begins to elucidate the multiple complex factors involved in cell migration, with typical confounding factors being independently controlled. The development of this unique platform will allow researchers to probe how cells behave within increasingly complex 3D microenvironments that begin to mimic specifically chosen aspects of the in vivo landscape

    Isolable rubidium and caesium derivatives of common organic carbonyl compounds

    Get PDF
    Light alkali metal (Li, Na, K) amides have a long history of synthetic utility, but heavier (Rb, Cs) congeners have barely been studied. This study reveals remarkable structurally complex outcomes of reacting AM(HMDS) (AM = Rb, Cs; HMDS = hexamethyldisilazide) with benzaldehyde and acetophenone. Though complicated, reactions give a diversity of eye-catching isolated products, an enolate with a hexagonal prismatic network, two dienolates with distinct extended ladder motifs, and two imino-alkoxides comprising zig-zag chains of metal-oxygen bonds in infinite cages

    Criteria for selecting implementation science theories and frameworks: results from an international survey

    Get PDF
    Abstract Background Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. Methods We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Results Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%), logical consistency/plausibility (56%), empirical support (53%), and description of a change process (54%). The criteria used by the fewest respondents included fecundity (10%), uniqueness (12%), and falsifiability (15%). Conclusions Implementation scientists use a large number of criteria to select theories, but there is little consensus on which are most important. Our results suggest that the selection of implementation theories is often haphazard or driven by convenience or prior exposure. Variation in approaches to selecting theory warn against prescriptive guidance for theory selection. Instead, implementation scientists may benefit from considering the criteria that we propose in this paper and using them to justify their theory selection. Future research should seek to refine the criteria for theory selection to promote more consistent and appropriate use of theory in implementation science

    Increasing compliance with medical procedures: application of the high-probability request procedure to a toddler.

    No full text
    The effects of high-probability (high-p) requests on compliance with low-probability (low-p) responses have received increased attention from applied investigators. This study examined the effects of a high-p procedure on a toddler's compliance with medical procedures. Compliance to low-p requests occurred more frequently following compliance to high-p requests, suggesting that this procedure may be useful across different topographies of compliance

    Evaluation of antecedent stimulus parameters for the treatment of escape-maintained aberrant behavior.

    No full text
    We evaluated a methodology for identifying the range of stimulus features of antecedent stimuli associated with aberrant behavior in demand contexts in natural settings. For each participant, an experimental analysis of antecedents (Phase 1) was conducted to confirm the hypothesis that task instructions occasioned increases in aberrant behavior. During Phase 2, specific stimulus features associated with the presentation of task instructions were assessed by evaluating the child's behavior across two distinct settings, therapists, and types of tasks in a sequential fashion. Aberrant behavior occurred immediately across settings and therapists, presumably because the presence of a discriminative stimulus for escape-maintained behavior (the delivery of a task instruction) occasioned aberrant behavior. However, aberrant behavior decreased initially across tasks, suggesting that familiarity with the task might be a variable. During Phase 3, an experimental (functional) analysis of consequences was conducted with 2 participants to verify that aberrant behavior was maintained by negative reinforcement. During Phase 4, a treatment package that interspersed play with task instructions was conducted to disrupt the ongoing occurrence of aberrant behavior. Immediate and durable treatment effects occurred for 2 of the 3 participants

    Use of a short-term inpatient model to evaluate aberrant behavior: outcome data summaries from 1996 to 2001.

    No full text
    Previous outcome studies have provided descriptions of functional analyses conducted in outpatient clinics (Derby et al., 1992), long-term inpatient programs (Iwata, Pace, et al., 1994), and home environments (Wacker et al., 1998). This study provides a description of 138 children and adults with and without developmental disabilities who were evaluated and treated for aberrant behaviors on a short-term inpatient unit. The results indicated that the functional analyses conducted during a short-term inpatient evaluation were successful for 96% of the participants in identifying maintaining reinforcers of aberrant behavior and leading to an 80% or greater reduction in aberrant behavior for 76% of the participants in an average of 10 days
    corecore