26 research outputs found
Mate-Searching Behaviour of Common and Rare Wasps and the Implications for Pollen Movement of the Sexually Deceptive Orchids They Pollinate
Pollinator behaviour directly affects patterns of pollen movement and outcrossing rates in plants. In orchids pollinated by sexual deception of insects, patterns of pollen movement are primarily determined by the mate-searching behaviour of the deceived males. Here, using a capture-mark-recapture study (CMR) and dietary analysis, we compare mate-searching behaviour in relation to local abundance of two pollinator species and explore the implications for pollen movement in sexually deceptive Drakaea (Orchidaceae). Drakaea are pollinated solely by the sexual deception of male thynnine wasps. The rare Drakaea elastica and widespread D. livida occur sympatrically and are pollinated by the rare but locally common Zaspilothynnus gilesi, and the widespread and abundant Z. nigripes, respectively. Local abundance was significantly different with Z. nigripes twice as abundant as Z. gilesi. For the 653 marked wasps, there was no significant difference in median movement distance between Z. gilesi and Z. nigripes. However, the maximum movement distance was twice as high for Z. gilesi (556 m) compared with Z. nigripes (267 m). This is up to three times greater than previously reported for thynnines in CMR studies. Recapture rates were six times higher in Z. gilesi (57%) compared to Z. nigripes (9%). Pollen loads and wasp longevity were similar, suggesting that this difference in recapture rate arises due to differences in the number of males moving at a scale >500 m rather than through diet or mortality. Differences in the frequency of longer movements may arise due to variation in the spatial distribution of the wingless females. We predict that pollen movement will largely be restricted to within populations of Drakaea (<500 m), with few movements between populations (>500 m). © 2013 Menz et al
Absence of nectar resource partitioning in a community of parasitoid wasps
Parasitoid wasps occur in diverse communities, with the adults of most species sourcing carbohydrates from nectar or honeydew. However, the role of niche partitioning of nectar resources in maintaining diverse communities of parasitoid Hymenoptera is poorly known. To elucidate patterns of nectar resource use and test whether species partition resources, we investigated pollen loads in a community of parasitoid thynnine wasps in the biodiversity hotspot of southwestern Australia. In total, 304 thynnine wasps from 28 species were captured. Eighteen of these species are undescribed, highlighting the high diversity of unrecognized species in southwestern Australia. Pollen loads were detected on 111 individuals representing 19 species. Six pollen types were identified. All species that carried pollen primarily visited two tree species, Agonis flexuosa and Eucalyptus marginata, in the Myrtaceae. The other four pollen types were only recorded from single wasps. There was no evidence of nectar-resource partitioning. This may be due to these Myrtaceae producing abundant, open-faced flowers. Wasp species that were not recorded carrying pollen may utilise other carbohydrate sources, such as homopoteran honeydew. Niche partitioning is predicted to occur during the parasitoid larval phase of the life cycle. This study highlights the importance of nectariferous Myrtaceae in supporting diverse wasp communities. Further, two species of nectar-foraging wasps collected here are involved in the pollination of rare orchid species. Hence, conservation and management of habitats that support floriferous Myrtaceae are important for both the maintenance of diverse wasp communities, and the plants they pollinate