30 research outputs found

    Differential sensitivity of murine leukemia virus to APOBEC3-mediated inhibition is governed by virion exclusion

    Get PDF
    While members of the APOBEC3 family of human intrinsic resistance factors are able to restrict the replication of Vif-deflcient forms of human immunodeficiency virus type 1 (HIV-1), they are unable to block replication of wild-type HIV-1 due to the action of Vif, which induces their degradation. In contrast, HIV-1 Vif is unable to block inhibition mediated by APOBEC3 proteins expressed by several heterologous species, including mice. Here, we have asked whether the simple retrovirus murine leukemia virus (MLV) is sensitive to restriction by the cognate murine or heterologous, human APOBEC3 proteins. We demonstrate that MLV is highly sensitive to inhibition by human APOBEC3G and APOBEC3B but resistant to inhibition by murine APOBEC3 or by other human APOBEC3 proteins, including APOBEC3F. This sensitivity fully correlates with the ability of these proteins to be packaged into MLV virion particles: i.e., human APOBEC3G and APOBEC3B are packaged while murine APOBEC3 and human APOBEC3F are excluded. Moreover, this packaging in turn correlates with the differential ability of these APOBEC3 proteins to bind MLV Gag. Together, these data suggest that MLV Gag has evolved to avoid binding, and hence virion packaging, of the cognate murine APOBEC3 protein but that MLV infectivity is still restricted by certain heterologous APOBEC3 proteins that retain this ability. Moreover, these results suggest that APOBEC3 proteins may help prevent the zoonotic infection of humans by simple retroviruses and provide a mechanism for how simple retroviruses can avoid inhibition by APOBEC3 family members

    Effects of dry or wet conditions during the preweaning phase on subsequent feedlot performance and carcass composition of beef cattle

    Get PDF
    Our objective was to determine the effects of dry and wet conditions during the preweaning on subsequent feedlot performance and carcass characteristics of beef cattle. Steers (n = 7,432) and heifers (n = 2,361) finished in 16 feedlots in southwestern Iowa through the Tri-County Steer Carcass Futurity Cooperative were used for a retrospective analysis. Cattle originated in the Midwest (Iowa, Missouri, Indiana, Illinois, and Minnesota) and were born in February, March, or April of 2002 through 2013. Feedlot performance and carcass composition data were obtained for each animal. Palmer Drought Severity Index (PDSI) values were obtained for each animal's preweaning environment on a monthly basis. Mean PDSI values were used to classify conditions as dry ([less than or equal to]-2.0), normal (>-2.0 and <2.0), or wet ([greater than or equal to]2.0) for the cool (April and May), warm (June through August), and combined (April through August) forage growing seasons preweaning. Mixed models were used to evaluate the effects of PDSI class on subsequent performance. Calf sex, date of birth (as day of year), year, and feedlot were also included as fixed effects. When considering PDSI class during the cool season, cattle from normal and wet classes had a greater feedlot delivery BW (P < 0.0001) than dry. Dry and normal classes had greater (P [less than or equal to] 0.02) delivery BW than wet during the warm and combined seasons, however. For the cool season, average daily gain was greater (P < 0.0001) for the dry class than normal and wet. Cattle from the normal class for the cool season had greater (P = 0.001) final BW than wet, but the wet class had the greatest (P < 0.04) and dry class had the lowest (P < 0.01) final BW during the warm season. During the cool season, HCW was greater (P < 0.007) for the normal than wet class, although HCW was greater (P [less than or equal to] 0.02) for wet compared with dry and normal during the warm season. Calculated yield grade was lower (P [less than or equal to] 0.006) for the normal class during the cool season compared with dry and wet. For both the warm and combined seasons, the dry class had lower (P [less than or equal to] 0.004) calculated yield grade compared with normal and wet. Carcasses from cattle that experienced normal or wet warm seasons had greater (P [less than or equal to] 0.0005) marbling scores than dry, and normal had greater (P = 0.0009) marbling score than dry for the combined seasons. In conclusion, these data indicate that both dry and wet conditions during the preweaning phase may impact ultimate feedlot performance and carcass composition
    corecore