172 research outputs found
Recommended from our members
Search for Higgs boson production in proton-antiproton collisions at s**(1/2) = 1.96 TeV
We performed a search for Standard Model Higgs boson production in association with W boson (p{bar p} {yields} W{sup {+-}}H {yields} {ell}{nu}b{bar b}) in p{bar p} collisions at {radical}s = 1.96 TeV. The search uses the data collected between February 2002 and February 2006 at Collider Detector at Fermilab (CDF), which corresponds to an integrated luminosity of about 1 fb{sup -1}. The experimental final state of WH {yields} {ell}{nu}b{bar b} process is lepton (e{sup {+-}}/{mu}{sup {+-}}), missing transverse energy and two jets. The largest background in lepton+jets events is W+light flavor process, therefore the identification of jets as b-jets reduces this kind of background significantly. We used displaced SECondary VerTeX b-tagging (SECVTX) technique, which utilizes the signature that b-jets have secondary vertex displaced away from primary vertex because of the long life time of B-mesons. However, there is still much contamination in SECVTX b-tagged jets. Finite resolution of secondary vertex tracking measurements results in false tags, and c-jets are also identified as b-jets due to the long life time of D-mesons frequently. For the purpose of increasing the purity of the SECVTX b-tagged jets, we applied Neural Network to SECVTX tagged jets for the first time by using secondary vertex variables and some variables independent of it. Neural Network filter rejects 65% of light flavor jets and 50% of c-jets from the SECVTX tagged jets. We improved the sensitivity of the Higgs boson signal search by 10% with Neural Network b-tagging technique. Events with one high p{sub T} electron or muon, large missing transverse energy and either single SECVTX b-tagged jet which passes the Neural Network filter or at least two SECVTX b-tagged jets are selected. The number of selected events and dijet mass distributions are consistent with the Standard Model background expectations. Therefore we set an upper limit on {sigma}(p{bar p} {yields} WH) {center_dot} Br(H {yields} b{bar b}) as 3.9 to 1.3 for Higgs boson mass from 110 to 150 GeV/c{sup 2} at 95% confidence level (C.L.). The upper limit obtained from WH {yields} {ell}{nu}b{bar b} process with 1 fb{sup -1} is far away from the Standard Model Higgs boson production expectation by a factor of 20 to 100 as a function of Higgs boson mass. To obtain stronger constraint on the Higgs boson production, we combined the upper limits obtained in processes of ZH {yields} {nu}{bar {nu}}b{bar b}, ZH {yields} {ell}{bar {ell}}b{bar b} and gg {yields} H {yields} W{sup +}W{sup -} {yields} {ell}{bar {ell}}{nu}{bar {nu}} at CDF. The combination of different channels gives a constraint on the ratio of 95% confidence level upper limit divided by the Standard Model prediction (({sigma} {center_dot} Br){sub 95}/({sigma} {center_dot} Br){sub SM}), which results in the ratio as 10 to 40 for Higgs boson mass between 110 and 200 GeV/c{sup 2}. Finally, the combination of Higgs boson searches between CDF and D0 is also performed. The resulting constraint on ({sigma} {center_dot} Br){sub 95}/({sigma} {center_dot} Br){sub SM} is about 4 to 10 for Higgs boson mass between 110 and 200 GeV/c{sup 2}
Structure Factor and Electronic Structure of Compressed Liquid Rubidium
We have applied the quantal hypernetted-chain equations in combination with
the Rosenfeld bridge-functional to calculate the atomic and the electronic
structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and
6.1 GPa); the calculated structure factors are in good agreement with
experimental results measured by Tsuji et al. along the melting curve. We found
that the Rb-pseudoatom remains under these high pressures almost unchanged with
respect to the pseudoatom at room pressure; thus, the effective ion-ion
interaction is practically the same for all pressure-values. We observe that
all structure factors calculated for this pressure-variation coincide almost
into a single curve if wavenumbers are scaled in units of the Wigner-Seitz
radius although no corresponding scaling feature is observed in the
effective ion-ion interaction.This scaling property of the structure factors
signifies that the compression in liquid-rubidium is uniform with increasing
pressure; in absolute Q-values this means that the first peak-position ()
of the structure factor increases proportionally to ( being the
specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure
Structural and dynamical properties of liquid Si. An orbital-free molecular dynamics study
Several static and dynamic properties of liquid silicon near melting have
been determined from an orbital free {\em ab-initio} molecular dynamics
simulation. The calculated static structure is in good agreement with the
available X-ray and neutron diffraction data. The dynamical structure shows
collective density excitations with an associated dispersion relation which
closely follows recent experimental data. It is found that liquid silicon can
not sustain the propagation of shear waves which can be related to the power
spectrum of the velocity autocorrelation function. Accurate estimates have also
been obtained for several transport coefficients. The overall picture is that
the dynamic properties have many characteristics of the simple liquid metals
although some conspicuous differences have been found.Comment: 12 pages, 11 figure
Pressure induced structural and dynamical changes in liquid Si. An ab-initio study
The static and dynamic properties of liquid Si at high-pressure have been
studied using the orbital free ab-initio molecular dynamics method. Four
thermodynamic states at pressures 4, 8, 14 and 23 GPa are considered. The
calculated static structure shows qualitative agreement with the available
experimental data. We analize the remarkable structural changes occurring
between 8 and 14 GPa along with its effect on several dynamic properties.Comment: 10 pages, 11 figures. Accepted for publication in Journal of Physics:
Condensed Matte
An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal
The Avogadro constant links the atomic and the macroscopic properties of
matter. Since the molar Planck constant is well known via the measurement of
the Rydberg constant, it is also closely related to the Planck constant. In
addition, its accurate determination is of paramount importance for a
definition of the kilogram in terms of a fundamental constant. We describe a
new approach for its determination by "counting" the atoms in 1 kg
single-crystal spheres, which are highly enriched with the 28Si isotope. It
enabled isotope dilution mass spectroscopy to determine the molar mass of the
silicon crystal with unprecedented accuracy. The value obtained, 6.02214084(18)
x 10^23 mol^-1, is the most accurate input datum for a new definition of the
kilogram.Comment: 4 pages, 5 figures, 3 table
Recommended from our members
Search for Standard Model Higgs Boson production in association with W boson at CDF
Recommended from our members
Exclusion of an Exotic Top Quark with -4/3 Electric Charge Using Soft Lepton Tagging
We present a measurement of the electric charge of the top quark using p{bar p} collisions corresponding to an integrated luminosity of 2.7 fb{sup -1} at the CDF II detector. We reconstruct t{bar t} events in the lepton+jets final state and use kinematic information to determine which b-jet is associated with the leptonically- or hadronically-decaying t-quark. Soft lepton taggers are used to determine the b-jet flavor. Along with the charge of the W boson decay lepton, this information permits the reconstruction of the top quark's electric charge. Out of 45 reconstructed events with 2.4 {+-} 0.8 expected background events, 29 are reconstructed as tt with the standard model +2/3 charge, whereas 16 are reconstructed as t{bar t} with an exotic -4/3 charge. This is consistent with the standard model and excludes the exotic scenario at 95% confidence level. This is the strongest exclusion of the exotic charge scenario and the first to use soft leptons for this purpose
Recommended from our members
Search for Standard Model Higgs Boson Production in Association with a W Boson using a Neural Network
We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (p{bar p} {yields} W{sup {+-}}H {yields} {ell}{nu}b{bar b}) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 fb{sup -1}. We select events consistent with a signature of a single charged lepton (e{sup {+-}}/{mu}{sup {+-}}), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150 GeV/c{sup 2}, respectively
Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction
Nearest and higher neighbor distances as well as bond length distributions
(static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have
been obtained from high real-space resolution atomic pair distribution
functions (PDFs). Using this structural information, we modeled the local
atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on
the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged
probability distributions. This clearly shows that As atom displacements are
highly directional and can be represented as a combination of and
displacements. Examination of the Kirkwood model indicates that the standard
deviation (sigma) of the static disorder on the (In,Ga) sublattice is around
60% of the value on the As sublattice and the (In,Ga) atomic displacements are
much more isotropic than those on the As sublattice. The single crystal diffuse
scattering calculated from the Kirkwood model shows that atomic displacements
are most strongly correlated along directions.Comment: 10 pages, 12 figure
- …