75 research outputs found

    Presumed stromal graft rejection after automated lamellar therapeutic keratoplasty: case report

    Get PDF
    PURPOSE: To describe the development of presumed immune-mediated stromal rejection after automated lamellar therapeutic keratoplasty (ALTK) and its reversal after initiation of intensive topical corticosteroid therapy. METHODS: Observational case report. RESULTS: Stromal edema localized in the graft developed 42 days after ALTK for Avellino corneal dystrophy in a 65-year-old man. After one week of intensive topical corticosteroids, complete reversal of graft edema occurred, with full recovery of visual function. CONCLUSION: The clinical appearance and response to therapy in this case supported the diagnosis of immune-mediated stromal rejection. Ophthalmologists should be aware that stromal rejection may occur in lamellar corneal grafts

    Dementia and Physical Activity (DAPA) - an exercise intervention to improve cognition in people with mild to moderate dementia: Study protocol for a randomized controlled trial

    Get PDF
    Background: Dementia is more common in older than in younger people, and as a result of the ageing of the population in developed countries, it is becoming more prevalent. Drug treatments for dementia are limited, and the main support offered to people with dementia and their families is generally services to mitigate against loss of function. Physical exercise is a candidate non-pharmacological treatment for dementia. Methods/Design: DAPA is a randomised controlled trial funded by the National Institute for Health Research Health Technology Assessment programme to estimate the effect of a 4-month, moderate- to hard-intensity exercise training programme and subsequent advice to remain active, on cognition (primary outcome) at 12 months in people with mild to moderate dementia. Community-dwelling participants (with their carers where possible), who are able to walk 3 metres without human assistance, able to undertake an exercise programme and do not have any unstable or terminal illness are recruited. Participants are then randomised by an independent statistician using a computerised random number generator to usual care or exercise at a 2:1 ratio in favour of exercise. The exercise intervention comprises 29, 1-hour-long exercise classes, run twice weekly at suitable venues such as leisure centres, which include aerobic exercise (on static bikes) and resistance exercise (using weights). Goals for independent exercise are set while the classes are still running, and supported thereafter with phone calls. The primary outcome is measured using ADAS-cog. Secondary outcome measures include behavioural symptoms, functional ability, quality of life and carer burden. Primary and secondary outcomes will be measured at baseline and at 6 and 12 months after randomisation, by researchers masked to participant randomisation in the participants' own homes. An economic evaluation will be carried out in parallel to the RCT, as will a qualitative study capturing the experiences of participants, carers and staff delivering the intervention. Discussion: The DAPA study will be the first large, randomised trial of the cognitive effects of exercise on people with dementia. The intervention is designed to be capable of being delivered within the constraints of NHS service provision, and the economic evaluation will allow assessment of its cost-effectiveness. Trial registration: DAPA was registered with the ISRCTN database on 29 July 2011, registration number ISRCTN32612072. © 2016 Atherton et al

    A Threshold Equation for Action Potential Initiation

    Get PDF
    In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research

    Characterization of PTZ-Induced Seizure Susceptibility in a Down Syndrome Mouse Model That Overexpresses CSTB

    Get PDF
    Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment

    Computational Model of the Insect Pheromone Transduction Cascade

    Get PDF
    A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed

    Central Flap Necrosis After LASIK

    No full text
    corecore