266 research outputs found

    Photo-induced dynamics of the heme centers in cytochrome bc 1

    Get PDF
    The ultrafast response of cytochrome bc1 is investigated for the first time, via transient absorption spectroscopy. The distinct redox potentials of both c1- and b-hemes allow for a clear differentiation of their respective signals. We find that while the c1-heme photo-product exhibits the characteristics of a 5-coordinated species, the b-hemes presumably undergo photo-oxidation at a remarkably high quantum yield. The c1-heme iron–ligand recombination time is 5.4 ps, in agreement with previous reports on homologous cytochromes. The suggested photo-oxidized state of the b-hemes has a lifetime of 6.8 ps. From this short life-time we infer that the electron acceptor must be within van der Walls contact with the heme, which points to the fact that the axial histidine residue is the electron acceptor. The different heme-responses illustrate the flexibility of the c1-heme ligation in contrast to the more rigid b-heme binding, as well as the higher electronic reactivity of the b-hemes within the bc1 complex. This study also demonstrates the remarkable connection between the heme local environment and its dynamics and, therefore, biological functio

    Status of high temperature superconductor based magnets and the conductors they depend upon

    Full text link
    This paper reviews the status of high temperature superconductors for high field magnets for future devices such as a high energy LHC or a muon collider. Some of the primary challenges faced for the implementation of systems are discussed. Two conductor technologies, Bi2_2Sr2_2CaCu2_2O8+x_{8+x} and YBa2_2Cu3_3O7δ_{7-\delta}, have emerged as high field conductor options, but their relative advantages and disadvantages for high field magnets are quite different. These are reviewed from an engineering perspective, including coil manufacturing, electromechanical behaviour and quench behaviour. Lastly, the important roles of "system pull" upon conductor and magnet technology development, and of interactions between the materials and magnet communities for accelerating development, are discussed.Comment: 11 pages, contribution to the EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider, Malta, 14 -- 16 Oct 2010; CERN Yellow Report CERN-2011-003, pp. 59-6

    High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications

    Full text link
    Superconducting technology provides most sensitive field detectors, promising implementations of qubits and high field magnets for medical imaging and for most powerful particle accelerators. Thus, with the discovery of new superconducting materials, such as the iron pnictides, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature Tc is high, intrinsic electronic properties might render applications rather difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates. While many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed and estimates point to a very high upper critical field, their application potential is less clarified. Thus we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65 T. Our detailed study of the transport properties of optimally doped SmFeAs(O,F) single crystals reveals a promising combination of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities along all crystal directions. This favorable intragrain current transport in SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a crucial requirement for possible applications. Essential in these experiments are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with sub-\mu\m^2 cross-section, with current along and perpendicular to the crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed magnetic fields. The pinning forces have been characterized by scaling the magnetically measured "peak effect"

    Insufficient neutralization in testing a chlorhexidine-containing ethanol-based hand rub can result in a false positive efficacy assessment

    Get PDF
    BACKGROUND: Effective neutralization in testing hand hygiene preparations is considered to be a crucial element to ensure validity of the test results, especially with the difficulty to neutralize chlorhexidine gluconate. Aim of the study was to measure the effect of chemical neutralization under practical test conditions according to EN 1500. METHODS: We have investigated two ethanol-based hand rubs (product A, based on 61% ethanol and 1% chlorhexidine gluconate; product B, based on 85% ethanol). The efficacy of products (application of 3 ml for 30 s) was compared to 2-propanol 60% (v/v) (two 3 ml rubs of 30 s each) on hands artificially contaminated with Escherichia coli using a cross-over design with 15 volunteers. Pre-values were obtained by rubbing fingertips for 1 minute in liquid broth. Post-values were determined by sampling immediately after disinfection in liquid broth with and without neutralizers (0.5% lecithin, 4% polysorbate 20). RESULTS: The neutralizers were found to be effective and non-toxic. Without neutralization in the sampling fluid, the reference disinfection reduced the test bacteria by 3.7 log(10), product B by 3.3 log(10 )and product A by 4.8 log(10 )(P = 0.001; ANOVA). With neutralization the reference disinfection reduced the test bacteria by 3.5 log(10), product B by 3.3 log(10 )and product A by 2.7 log(10 )(P = 0.011; ANOVA). In comparison to the reference treatment Product B lead to a lower mean reduction than the reference disinfection but the difference was not significant (P > 0.1; Wilcoxon-Wilcox test). Without neutralizing agents in the sampling fluid, product A yielded a significantly higher reduction of test bacteria (4.8; P = 0.02) as compared to the situation with neutralizing agents (2.7; P = 0.033). CONCLUSION: The crucial step of neutralization lies in the sampling fluid itself in order to stop any residual bacteriostatic or bactericidal activity immediately after the application of the preparation, especially with chlorhexidine gluconate-containing preparations. This is particularly important at short application times such as the 30 s

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference
    corecore