95,920 research outputs found
Computation of three-dimensional nozzle-exhaust flow fields with the GIM code
A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology
Vacuum Polarisation and the Black Hole Singularity
In order to investigate the effects of vacuum polarisation on mass inflation
singularities, we study a simple toy model of a charged black hole with cross
flowing radial null dust which is homogeneous in the black hole interior. In
the region we find an approximate analytic solution to the
classical field equations. The renormalized stress-energy tensor is evaluated
on this background and we find the vacuum polarisation backreaction corrections
to the mass function . Asymptotic analysis of the semiclassical mass
function shows that the mass inflation singularity is much stronger in the
presence of vacuum polarisation than in the classical case.Comment: 12 pages, RevTe
In situ observations of BrO over Antarctica: ER-2 aircraft results from 54 S to 72 S latitude
Bromine monoxide was observed in situ at approximately 18 km altitude during nine flights of the NASA ER-2 aircraft from Punta Arenas, Chile (54 altitude) to 72 S latitude over the Palmer Peninsula, Antarctica. The first flight for the BrO detection system was on 28 August. Here, the results from the flights over Antarctica and from the ferry flights from Punta Arenas to Moffett Field, CA (37 N latitude are reported. A key question concerning BrO, then, is how it is distributed with respect to the chemical containment vessel defined by elevated ClO mixing ratios. This question is answered with greatest statistical significance if the data are averaged into five regions: outside the vessel, aircraft heading south; inside the vessel on the same potential temperature surface; in the dive region; inside the vessel on a given potential temperature surface, aircraft heading north; and outside the vessel on the same surface. The result is that the BrO distribution inside the chemical containment vessel was different from that found outside. Inside, the BrO mixing ratio was (5.0 plus or minus 1.1) pptv between the 400 K and 460 K potential temperature surfaces, decreasing only slightly with potential temperature, and was less than 3.6 pptv below the 4 00 K surface. The abundance of BrO inside the chemical containment vessel showed no discernible temporal trend during the course of the nine flights. Outside the vessel, the BrO mixing ratio was (4.7 plus or minus 1.3) pptv near the 450 K surface, but decreased to (2.8 plus or minus 1.0) pptv near the 420 K surface
Finite difference grid generation by multivariate blending function interpolation
The General Interpolants Method (GIM) code which solves the multidimensional Navier-Stokes equations for arbitrary geometric domains is described. The geometry module in the GIM code generates two and three dimensional grids over specified flow regimes, establishes boundary condition information and computes finite difference analogs for use in the GIM code numerical solution module. The technique can be classified as an algebraic equation approach. The geometry package uses multivariate blending function interpolation of vector-values functions which define the shapes of the edges and surfaces bounding the flow domain. By employing blending functions which conform to the cardinality conditions the flow domain may be mapped onto a unit square (2-D) or unit cube (3-D), thus producing an intrinsic coordinate system for the region of interest. The intrinsic coordinate system facilitates grid spacing control to allow for optimum distribution of nodes in the flow domain
Edge coating of flat wires
An apparatus and technique is described for the coating of the edge surfaces of flat ribbon conductors with an adherent coating of a dielectric insulating material. Means for passing the ribbon conductors between a pair of generally axially aligned rollers is provided. The edge surfaces of the conductor are disposed adjacent to and generally tangentially to the confronting surfaces of the roller so as to form a fillet of dielectric material along the edge surface of the conductor
c-axis transport and phenomenology of the pseudo-gap state in
We measure and analyze the resistivity of
crystals for different doping . We obtain the fraction of carrier
that do not participate to the c-axis
conductivity. All the curves collapse onto a universal curve
when plotted against a reduced temperature
. We find that at the superconducting
transition is doping independent. We also show that a magnetic field up
to 14 T does not affect the degree of localization in the (a,b) planes but
widens the temperature range of the x-scaling by suppressing the
superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.
Large- limit of a Hubbard model in a magnetic field: chiral spin interactions and paramagnetism
We consider the large- limit of the one-band Hubbard model at half-filling
on a non-bipartite two-dimensional lattice. An external magnetic field can
induce a three-spin chiral interaction at order . We discuss
situations in which, at low temperatures, the chiral term may have a larger
effect than the Pauli coupling of electron spins to a magnetic field. We
present a model which explicitly demonstrates this. The ground state is a
singlet with a gap; hence the spin susceptibility is zero while the chiral
susceptibility is finite and paramagnetic.Comment: 12 pages, plain TeX, one figure available on request, to appear in
Phys. Rev.
Comment on "Anderson transition in disordered graphene"
We comment on a recent letter by Amini et al. (EPL 87, 37002 (2009))
concerning the existence of a mobility edge in disordered graphene.Comment: 3 pages, 3 figure
Improving fertiliser management: redefining the relationship between soil tests and crop responses for wheat in WA
Most soils in Western Australia (WA) are highly weathered with very low levels of phosphorus. WA soils initially contained adequate indigenous soil potassium for cropping but removal of potassium over time in harvested grain has gradually resulted in the some soils becoming potassium-deficient for grain production.
Fertiliser costs represent a significant part of the variable costs of growing crops in WA. Chen et al. (2009) identified the need for updated soil test interpretations due to substantial changes in farming systems, fertiliser practices and crop yield potential. The aims of this study were (1) to compile experimental data containing the standard soil test measurements and observed wheat crop yield responses for both nil and fertilised treatments across different soil types and seasons from published or unpublished sources, and (2) to critically analyse soil test-crop response relationships to derive better critical soil test values in soils and environments suitable for wheat grain production in WA
- …
