29 research outputs found

    Highly Potent 1H-1,2,3-Triazole-Tethered Isatin-Metronidazole Conjugates Against Anaerobic Foodborne, Waterborne, and Sexually-Transmitted Protozoal Parasites

    Get PDF
    Parasitic infections like amebiasis, trichomoniasis, and giardiasis are major health threats in tropical and subtropical regions of the world. Metronidazole (MTZ) is the current drug of choice for amebiasis, giardiasis, and trichomoniasis but it has several adverse effects and potential resistance is a concern. In order to develop alternative antimicrobials, a library of 1H-1,2,3-triazole-tethered metronidazole-isatin conjugates was synthesized using Huisgen\u27s azide-alkyne cycloaddition reaction and evaluated for their amebicidal, anti-trichomonal, and anti-giardial potential. Most of the synthesized conjugates exhibited activities against Trichomonas vaginalis, Tritrichomonas foetus, Entamoeba histolytica, and Giardia lamblia. While activities against T. vaginalis and T. foetus were comparable to that of the standard drug MTZ, better activities were observed against E. histolytica and G. lamblia. Conjugates 9d and 10a were found to be 2–3-folds more potent than MTZ against E. histolytica and 8–16-folds more potent than MTZ against G. lamblia. Further analysis of these compounds on fungi and bacteria did not show inhibitory activity, demonstrating their specific anti-protozoal properties

    Highly Potent 1H-1,2,3-Triazole-Tethered Isatin-Metronidazole Conjugates Against Anaerobic Foodborne, Waterborne, and Sexually-Transmitted Protozoal Parasites

    Get PDF
    Parasitic infections like amebiasis, trichomoniasis, and giardiasis are major health threats in tropical and subtropical regions of the world. Metronidazole (MTZ) is the current drug of choice for amebiasis, giardiasis, and trichomoniasis but it has several adverse effects and potential resistance is a concern. In order to develop alternative antimicrobials, a library of 1H-1,2,3-triazole-tethered metronidazole-isatin conjugates was synthesized using Huisgen's azide-alkyne cycloaddition reaction and evaluated for their amebicidal, anti-trichomonal, and anti-giardial potential. Most of the synthesized conjugates exhibited activities against Trichomonas vaginalis, Tritrichomonas foetus, Entamoeba histolytica, and Giardia lamblia. While activities against T. vaginalis and T. foetus were comparable to that of the standard drug MTZ, better activities were observed against E. histolytica and G. lamblia. Conjugates 9d and 10a were found to be 2–3-folds more potent than MTZ against E. histolytica and 8–16-folds more potent than MTZ against G. lamblia. Further analysis of these compounds on fungi and bacteria did not show inhibitory activity, demonstrating their specific anti-protozoal properties

    A DC-50-GHz Direct-Coupled Self-Biased 50-nm Quasi-E-Mode GaN MMIC Amplifier Based on a 237-GHz f T

    No full text

    Click-chemistry approach to synthesis of functionalized isatin-ferrocenes and their biological evaluation against the human pathogen Trichomonas vaginalis

    No full text
    Copper-promoted azide-alkyne cycloadditions were attempted to synthesize a series of variedly functionalized 1H-1,2,3-triazole-linked isatin-ferrocene, ferrocenylmethoxy-isatin and isatin-ferrocenyl-chalcone conjugates. The synthesized scaffolds were assayed for their inhibitory activity against T. vaginalis as well as several common normal human flora bacteria. The observed inhibitory activities against T. vaginalis and undetectable inhibition of microflora bacteria suggest that these compounds may be specific against trichomonad protozoa and could serve as a new scaffold for synthesis of novel compounds against this important human pathogen

    Jointed Goatgrass Best management practices southern Great Plains

    No full text
    Jointed Goatgrass is an invasive weed that is closely related to wheat and can have a negative impact on wheat profitability. This publication details the best management practices in a multi-practice approach, specific to the Southern Great Plains region, for successful control of jointed goatgrass

    Highly Potent 1H-1,2,3-Triazole-Tethered Isatin-Metronidazole Conjugates Against Anaerobic Foodborne, Waterborne, and Sexually-Transmitted Protozoal Parasites

    No full text
    Parasitic infections like amebiasis, trichomoniasis, and giardiasis are major health threats in tropical and subtropical regions of the world. Metronidazole (MTZ) is the current drug of choice for amebiasis, giardiasis, and trichomoniasis but it has several adverse effects and potential resistance is a concern. In order to develop alternative antimicrobials, a library of 1H-1,2,3-triazole-tethered metronidazole-isatin conjugates was synthesized using Huisgen\u27s azide-alkyne cycloaddition reaction and evaluated for their amebicidal, anti-trichomonal, and anti-giardial potential. Most of the synthesized conjugates exhibited activities against Trichomonas vaginalis, Tritrichomonas foetus, Entamoeba histolytica, and Giardia lamblia. While activities against T. vaginalis and T. foetus were comparable to that of the standard drug MTZ, better activities were observed against E. histolytica and G. lamblia. Conjugates 9d and 10a were found to be 2–3-folds more potent than MTZ against E. histolytica and 8–16-folds more potent than MTZ against G. lamblia. Further analysis of these compounds on fungi and bacteria did not show inhibitory activity, demonstrating their specific anti-protozoal properties
    corecore